We present Eagle, a new hybrid data center scheduler for data-parallel programs. Eagle dynamically divides the nodes of the data center in partitions for the execution of long and short jobs, thereby avoiding head-of-line blocking. Furthermore, it provides job awareness and avoids stragglers by a new technique, called Sticky Batch Probing (SBP).The dynamic partitioning of the data center nodes is accomplished by a technique called Succinct State Sharing (SSS), in which the distributed schedulers are informed of the locations where long jobs are executing. SSS is particularly easy to implement with a hybrid scheduler, in which the centralized scheduler places long jobs.With SBP, when a distributed scheduler places a probe for a job on a node, the probe stays there until all tasks of the job have been completed. When finishing the execution of a task corresponding to probe P, rather than executing a task corresponding to the next probe P' in its queue, the node may choose to execute another task corresponding to P. We use SBP in combination with a distributed approximation of Shortest Remaining Processing Time (SRPT) with starvation prevention.We have implemented Eagle as a Spark plugin, and we have measured job completion times for a subset of the Google trace on a 100-node cluster for a variety of cluster loads. We provide simulation results for larger clusters, different traces, and for comparison with other scheduling disciplines. We show that Eagle outperforms other state-ofthe-art scheduling solutions at most percentiles, and is more robust against mis-estimation of task duration.
The vast majority of data center schedulers use task runtime estimates to improve the quality of their scheduling decisions. Knowledge about runtimes allows the schedulers, among other things, to achieve better load balance and to avoid headof-line blocking. Obtaining accurate runtime estimates is, however, far from trivial, and erroneous estimates lead to sub-optimal scheduling decisions. Techniques to mitigate the effect of inaccurate estimates have shown some success, but the fundamental problem remains. This paper presents Kairos, a novel data center scheduler that assumes no prior information on task runtimes. Kairos introduces a distributed approximation of the Least Attained Service (LAS) scheduling policy. Kairos consists of a centralized scheduler and per-node schedulers. The per-node schedulers implement LAS for tasks on their node, using preemption as necessary to avoid head-of-line blocking. The centralized scheduler distributes tasks among nodes in a manner that balances the load and imposes on each node a workload in which LAS provides favorable performance. We have implemented Kairos in YARN. We compare its performance against the YARN FIFO scheduler and Big-C, an open-source state-of-the-art YARN-based scheduler that also uses preemption. Compared to YARN FIFO, Kairos reduces the median job completion time by 73% and the 99th percentile by 30%. Compared to Big-C, the improvements are 37% for the median and 57% for the 99th percentile. We evaluate Kairos at scale by implementing it in the Eagle simulator and comparing its performance against Eagle. Kairos improves the 99th percentile of short job completion times by up to 55% for the Google trace and 85% for the Yahoo trace. Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses, contact the owner/author(s).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.