The electroolfactogram (EOG) is a negative electrical potential recorded at the surface of the olfactory epithelium of vertebrates. It represents primarily, if not exclusively, the summated generator potential in the olfactory receptor neurons (ORNs). While a number of studies suggest that secretory or inhibitory events may also contribute to the EOG, these are not well established. This review outlines (1) the cellular and physiological nature of the EOG response; (2) methodological considerations regarding odor selection and delivery, surgical preparation, response descriptions, and analysis; and (3) application of the EOG in human, fish, and insect olfaction and pheromonal responsivity. A number of technical issues associated with EOG recording are also discussed.
The electroolfactogram (EOG) previously has been used to demonstrate the regional distribution of rat olfactory epithelial odorant responses. Here, we evaluated the effects of airflow parameters on EOGs in two preparations: one where odorants were directly applied to the epithelium (opened preparation) and one where odorants were drawn through the nasal passages by an artificial sniff (closed preparation). EOG rise times served as one measure of odorant access. For isoamyl acetate (but not for limonene), rise times were slower in the lateral recesses of the closed (but not the opened) preparation. Polar odorants (amyl acetate, carvone and benzaldehyde) evoked smaller responses in the closed preparation than in the opened preparation, and these responses were particularly depressed in the lateral regions of the closed preparation. Responses to nonpolar hydrocarbon odorants (limonene and benzene) were equal in the lateral regions of both preparations, but were somewhat depressed in the medial region of the closed preparation. The responses to some polar odorants in the closed preparation were sensitive to changes in airflow parameters. These data suggest that the sorptive properties of the nose contribute substantially to determining the response of the epithelium and act to increase differences produced by inherent receptor mechanisms.
Women of color have historically been underrepresented across the sciences. Neuroscience is no exception. Unfortunately, few studies have examined or shed light on how the dual presence of race and gender affects the educational and professional experiences of African American women in science. This chapter will reflect upon the journey of being an African American woman of science (psychology and neuroscience) in the academy and the blessings not abundantly clear. Through a critical lens, recognizing how the journey would have been more difficult without the supportive network of individual and the critical importance of Historically Black Colleges and Universities. Understanding the context of the times and the need to develop networks that facilitate success of future generations of African American female scholars is crucial.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.