This study aimed to evaluate the effects of a high refined carbohydrate diet and pulmonary inflammatory response in C57BL/6 mice exposed to cigarette smoke (CS). Twenty-four male mice were divided into four groups: control group (CG), which received a standard diet; cigarette smoke group (CSG), which was exposed to CS; a high refined carbohydrate diet group (RG), which received a high refined carbohydrate diet; and a high refined carbohydrates diet and cigarette smoke group (RCSG), which received a high refined carbohydrate diet and was exposed to CS. The animals were monitored for food intake and body weight gain for 12 weeks. After this period, the CSG and RCSG were exposed to CS for five consecutive days. At the end of the experimental protocol, all animals were euthanized for subsequent analyses. There was an increase of inflammatory cells in the bronchoalveolar lavage fluid (BALF) of CSG compared to CG and RCSG compared to CG, CSG, and RG. In addition, in the BALF, there was an increase of tumor necrosis factor alpha in RCSG compared to CG, CSG, and RG; interferon gamma increase in RCSG compared to the CSG; and increase in interleukin-10 in RCSG compared to CG and RG. Lipid peroxidation increased in RCSG compared to CG, CSG, and RG. Furthermore, the oxidation of proteins increased in CSG compared to CG. The analysis of oxidative stress showed an increase in superoxide dismutase in RCSG compared to CG, CSG, and RG and an increase in the catalase activity in RCSG compared with CG. In addition, there was a decrease in the glutathione reduced/glutathione total ratio of CSG, RG, and RCSG compared to CG. Therefore, the administration of a high refined carbohydrate diet promoted an increase in pulmonary inflammation and oxidative stress in mice exposed to CS.
Cigarette smoking throughout life causes serious health issues in the lungs. The electronic cigarette (E-Cig) use increased, since it was first introduced in the world. This research work compared the short-term exposure consequences to e-cigarette vapor and cigarette smoke in male mice. Forty-five C57BL/6 mice were randomized into control (C) in an ambient air exposition cigarette smoke (CS) and aerosol electronic cigarette (EC), both were exposed to 120 puffs, 3 times/day during five days. Then, in the experimental protocol, the euthanized mice had their tissues removed for analysis. Our study showed that CS and EC resulted in higher cell influx into the airways, and an increase in macrophage counts in CS (209.25 ± 7.41) and EC (220.32 ± 8.15) when compared to C (108.40 ± 4.49) ( p < 0.0001 ). The CS (1.92 ± 0.23) displayed a higher pulmonary lipid peroxidation as opposed to C (0.93 ± 0.06) and EC (1.23 ± 0.17) ( p < 0.05 ). The EC (282.30 ± 25.68) and CS (368.50 ± 38.05) promoted increased levels of interleukin 17 when compared to C (177.20 ± 10.49) ( p < 0.05 ). The EC developed shifts in lung histoarchitecture, characterized by a higher volume density in the alveolar air space (60.21; 55.00-65.83) related to C (51.25; 18.75-68.75) and CS (50.26; 43.75-62.08) (p =0.002). The EC (185.6 ± 9.01) presented a higher respiratory rate related to CS (133.6 ± 10.2) ( p < 0.002 ). Therefore, our findings demonstrated that the short-term exposure to e-cig promoted more acute inflammation comparing to cigarette smoke in the ventilatory parameters of the animals.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.