The gastrointestinal tract is one of the most complex microbiological niches containing beneficial and non-pathogenic bacterial strains of which some may evolve into virulent under specific conditions. Lactobacillus rhamnosus GG is of the most known beneficial species with an ability to protect the intestine as opposed to Staphylococcus epidermidis 444 which causes serious health risks due to its high antimicrobial resistance. This study investigates first the survival and coexistence ability of L. rhamnosus GG, and S. epidermidis 444 at different pH levels. Subsequently, lysozyme's antimicrobial and antibiofilm effect on these two strains was elucidated before adding different concentrations of oxytetracycline hydrochloride antibiotic. Results showed that 50% inhibition of L. rhamnosus GG, S. epidermidis 444, and a co-culture of these planktonic strains were obtained respectively at a lysozyme concentration of 30, 18, and 26 mg/mL after the addition of ethylenediamine tetra-acetic acid (EDTA). At a pH of 7.5, mixing lysozyme (at IC50) and EDTA with oxytetracycline hydrochloride (700 μg/mL) showed an additional bactericidal effect as compared to its known bacteriostatic effect. Similarly, the addition of lysozyme to the antibiotic further increased the biofilm eradication of S. epidermidis 444 and L. rhamnosus GG where a maximal eradication of 70% was reached. Therefore, the potential development of new drugs based on adding a lysozyme-EDTA mixture to different types of antibiotics may be highly promising.
Plant extracts may represent an ecofriendly alternative to chemical fungicides to limit aflatoxin B1 (AFB1) contamination of foods and feeds. Mate (Ilex paraguariensis), rosemary (Romarinus officinalis) and green tea (Camellia sinensis) are well known for their beneficial properties, which are mainly related to their richness in bioactive phenolic compounds. AFB1 production is inhibited, with varying efficiency, by acetone/water extracts from these three plants. At 0.45 µg dry matter (DM)/mL of culture medium, mate and green tea extracts were able to completely inhibit AFB1 production in Aspergillus flavus, and rosemary extract completely blocked AFB1 biosynthesis at 3.6 µg DM/mL of culture medium. The anti-AFB1 capacity of the extracts correlated strongly with their phenolic content, but, surprisingly, no such correlation was evident with their antioxidative ability, which is consistent with the ineffectiveness of these extracts against fungal catalase activity. Anti-AFB1 activity correlated more strongly with the radical scavenging capacity of the extracts. This is consistent with the modulation of SOD induced by mate and green tea in Aspergillus flavus. Finally, rutin, a phenolic compound present in the three plants tested in this work, was shown to inhibit AFB1 synthesis and may be responsible for the anti-mycotoxin effect reported herein.
The emergence, persistence, and spread of antibiotic-resistant microbes is a tremendous public health threat that is considered nowadays a critical One Health issue. In Lebanon, the consumption of raw bovine milk has been recently reported as a result of the financial crisis. The objectives of the current study were (1) to evaluate raw bovine milk samples in a comprehensive manner for the types of antibiotics used and their residues, (2) to determine the presence of mesophilic bacteria, extended-spectrum β-lactamase (ESBL)-producing Escherichia coli and methicillin-resistant Staphylococcus aureus (MRSA), and (3) to determine the associated human health risk caused by drinking raw milk with antibiotic residues among all age categories. LC-MS-MS was used to carry out the analysis. From 200 milk samples, 30 (15%) were found contaminated with four major antibiotics. The highest average concentration detected was for oxytetracyline 31.51 ± 13.23 μg/kg, followed by 5.5 ± 0.55 μg/kg for gentamicin, 4.56 ± 0.73 μg/kg for colistin, and 4.44 ± 0.89 μg/kg for tylosin. The mean contamination among most samples was below the maximum residue limits (MRLs). Upon comparison with the acceptable daily intake (ADI), the estimated daily intake (EDI) across all age groups was acceptable. The hazard quotient (HQ) was also below 1 across all age groups, signifying the absence of associated health risks for the Lebanese consumers. On the other hand, all milk samples were found exceeding the maximum tolerable value of mesophilic flora. Antibiotic-resistant bacteria (ARB) were detected and represented by ESBL-producing E. coli and MRSA isolates. Thus, the greatest threat of antibiotic use in Lebanon does not fall under antibiotic residues but rather the proliferation of antibiotic resistance in potentially pathogenic bacteria. In this study, the virulence profile of detected bacteria was not investigated; thus their pathogenicity remains unknown. Therefore, to mitigate this health threat in Lebanon, a “One Health” action plan against ABR is required. It will provide a framework for continued, more extensive action to reduce the emergence and spread of ABR in Lebanon.
Aflatoxin B1 is a carcinogenic mycotoxin that frequently contaminates crops worldwide. Current research indicates that the use of natural extracts to combat mycotoxin contamination may represent an eco-friendly, sustainable strategy to ensure food safety. Although Cannabis sativa L. has long been known for its psychoactive cannabinoids, it is also rich in many other bioactive molecules. This study examines extracts from various organs of Cannabis sativa L. to determine their ability to limit aflatoxin production and growth of Aspergillus flavus. The results indicate that flower extract is most effective for limiting the synthesis of aflatoxin B1, leading to an almost-complete inhibition of toxin production at a concentration of 0.225 milligrams dry matter per gram of culture medium. Since flower extract is rich in phenolic compounds, its total antioxidant ability and radical-scavenging capacity are determined. Compared with other anti-aflatoxigenic extracts, the anti-oxidative potential of Cannabis sativa L. flower extract appears moderate, suggesting that its anti-mycotoxin effect may be related to other bioactive compounds.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.