of cannabinoid receptor 1 and 2 inhibit experimental colitis induced by oil of mustard and by dextran sulfate sodium. Am J Physiol Gastrointest Liver Physiol 291: G364 -G371, 2006. First published March 30, 2006 doi:10.1152/ajpgi.00407.2005.-Oil of mustard (OM) is a potent neuronal activator that is known to elicit visceral hyperalgesia when given intracolonically, but the full extent to which OM is also proinflammatory in the gastrointestinal tract is not known. We have previously shown that male CD-1 mice given a single administration of 0.5% OM develop a severe colitis that is maximum at day 3 and that gradually lessens until essentially absent by day 14. OM-induced neuronal stimulation is reported to be reduced by cannabinoid agonists, and cannabinoid receptor 1 (CB1R) Ϫ/Ϫ mice have exacerbated experimental colitis. Therefore, we examined the role of cannabinoids in this OM-induced 3-day model of colitis in CD-1 mice and in a 7-day dextran sulfate sodium (DSS) colitis model in BALB/c mice. In OM colitis, the CB1R-selective agonist ACEA and the CB2R-selective agonist JWH-133 reduced (P Ͻ 0.05) colon weight gain (means Ϯ SE; 82 Ϯ 13% and 47 Ϯ 15% inhibition, respectively), colon shrinkage (98 Ϯ 24% and 42 Ϯ 12%, respectively), colon inflammatory damage score (49 Ϯ 11% and 40 Ϯ 12%, respectively), and diarrhea (58 Ϯ 12% and 43 Ϯ 11%, respectively). Histological damage was similarly reduced by these treatments. Likewise, CBR agonists attenuated DSS colitis, albeit at higher doses; ACEA at 10 mg/kg, twice daily, inhibited (P Ͻ 0.05) macroscopic and microscopic scores (46 Ϯ 9% and 63 Ϯ 7%, respectively); whereas 20 mg/kg, twice daily, of JWH-133 was required to diminish (P Ͻ 0.05) macroscopic and microscopic scores (29 Ϯ 7% and 43 Ϯ 5%, respectively). CB1R and CB2R immunostaining of colon sections revealed that CB1R in enteric neurons was more intense in colitic vs. control mice; however, CB1R was also increased in the endothelial layer in OM colitis only. CB2R immunostaining was more marked in infiltrated immune cells in OM colitis. These findings validate the OM colitis model with respect to the DSS model and provide strong support to the emerging idea that cannabinoid receptor activation mediates protective mechanisms in experimental colitis. The demonstration of CB1R agonist effects in colitis support the neurogenic nature of the OM-induced colitis model and reinforce the importance of neuronal activation in intestinal inflammation.
BACKGROUND & PURPOSELoperamide is a selective m opioid receptor agonist acting locally in the gastrointestinal (GI) tract as an effective anti-diarrhoeal but can cause constipation. We tested whether modulating m opioid receptor agonism with d opioid receptor antagonism, by combining reference compounds or using a novel compound ('MuDelta'), could normalize GI motility without constipation. EXPERIMENTAL APPROACHMuDelta was characterized in vitro as a potent m opioid receptor agonist and high-affinity d opioid receptor antagonist. Reference compounds, MuDelta and loperamide were assessed in the following ex vivo and in vivo experiments: guinea pig intestinal smooth muscle contractility, mouse intestinal epithelial ion transport and upper GI tract transit, entire GI transit or faecal output in novel environment stressed mice, or four weeks after intracolonic mustard oil (post-inflammatory). Colonic d opioid receptor immunoreactivity was quantified. KEY RESULTSd Opioid receptor antagonism opposed m opioid receptor agonist inhibition of intestinal contractility and motility. MuDelta reduced intestinal contractility and inhibited neurogenically-mediated secretion. Very low plasma levels of MuDelta were detected after oral administration. Stress up-regulated d opioid receptor expression in colonic epithelial cells. In stressed mice, MuDelta normalized GI transit and faecal output to control levels over a wide dose range, whereas loperamide had a narrow dose range. MuDelta and loperamide reduced upper GI transit in the post-inflammatory model. CONCLUSIONS AND IMPLICATIONSMuDelta normalizes, but does not prevent, perturbed GI transit over a wide dose-range in mice. These data support the subsequent assessment of MuDelta in a clinical phase II trial in patients with diarrhoea-predominant irritable bowel syndrome.
Neurogenic mechanisms have been implicated in the induction of inflammatory bowel disease (IBD). Vanilloid receptor type 1 (TRPV1) has been visualized on nerve terminals of intrinsic and extrinsic afferent neurones innervating the gastrointestinal tract and local administration of a TRPV1 antagonist, capsazepine, reduces the severity of dextran sulphate sodium (DSS)-induced colitis in rats (Gut 2003; 52: 713-9(1)). Our aim was to test whether systemically or orally administered TRPV1 antagonists attenuate experimental colitis induced by 5% DSS in Balb/c mice. Intraperitoneal capsazepine (2.5 mg kg(-1), bid), significantly reduced the overall macroscopic damage severity compared with vehicle-treated animals (80% inhibition, P < 0.05); however, there was no effect on myeloperoxidase (MPO) levels. An experimental TRPV1 antagonist given orally was tested against DSS-induced colitis, and shown to reverse the macroscopic damage score at doses of 0.5 and 5.0 mg kg(-1). Epithelial damage assessed microscopically was significantly reduced. MPO levels were attenuated by approximately 50%, and diarrhoea scores were reduced by as much as 70%. These results suggest that pharmacological modulation of TRPV1 attenuates indices of experimental colitis in mice, and that development of orally active TRPV1 antagonists might have therapeutic potential for the treatment of IBD.
Monoclonal antibodies (mAbs) have emerged as a major class of therapeutic agents on the market. To date, approximately 80 mAbs have been granted marketing approval. In 2018, 12 new mAbs were approved by the FDA, representing 20% of the total number of approved drugs. The majority of mAb therapeutics are for oncological and immunological/infectious diseases, but these are expanding into other disease areas. Over 100 monoclonal antibodies are in development, and their unique features ensure that these will remain a part of the therapeutic pipeline. Thus, the therapeutic value and the elucidation of their pharmacological properties supporting clinical development of these large molecules are unquestioned. However, their utilization as pharmacological tools in academic laboratories has lagged behind their small molecule counterparts. Early therapeutic mAbs targeted soluble cytokines, but now that mAbs also target membrane‐bound receptors and have increased circulating half‐life, their pharmacology is more complex. The principles of pharmacology have enabled the development of high affinity, potent and selective small molecule therapeutics with reduced off‐target effects and drug‐drug interactions. This review will discuss how the same basic principles can be applied to mAbs, with some important differences. Monoclonal antibodies have several benefits, such as fewer off‐target adverse effects, fewer drug‐drug interactions, higher specificity, and potentially increased efficacy through targeted therapy. Modifications to decrease the immunogenicity and increase the efficacy are described, with examples of optimizing their pharmacokinetic properties and enabling oral bioavailability. Increased awareness of these advances may help to increase their use in exploratory research and further understand and characterize their pharmacological properties.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.