Exposure of human alveolar macrophages to bacterial LPS results in activation of a number of signal transduction pathways. An early event after the alveolar macrophage comes in contact with LPS is activation of the phosphatidylinositol 3 kinase (PI 3-kinase). This study evaluates the downstream effects of that activation. We observed that LPS exposure results in phosphorylation of Akt (serine 473). We found this using both phosphorylation-specific Abs and also by in vivo phosphorylation with 32P-loaded cells. AKT activation resulted in the phosphorylation-dependent inactivation of glycogen synthase kinase (GSK-3) (serine 21/9). We found that both of these events were linked to PI 3-kinase because the PI 3-kinase inhibitors, wortmannin and LY294002, inhibited LPS-induced phosphorylation of both AKT and GSK-3. Inactivation of GSK-3 has been shown to reduce the ubiquitination of β-catenin, resulting in nuclear accumulation and transcriptional activity of β-catenin. Consistent with this, we found that LPS caused an increase in the amounts of PI 3-kinase-dependent nuclear β-catenin in human alveolar macrophages and expression of genes that require nuclear β-catenin for their activation. This is the first demonstration that LPS exposure activates AKT, inactivates GSK-3, and causes accumulation and transcriptional activity of β-catenin in the nucleus of any cell, including alveolar macrophages.
The phosphatidylinositol (PI) 3-kinase pathway is an important regulator of cell survival. In human alveolar macrophages, we found that LPS activates PI 3-kinase and its downstream effector, Akt. LPS exposure of alveolar macrophages also results in the generation of ceramide. Because ceramide exposure induces apoptosis in other cell types and the PI 3-kinase pathway is known to inhibit apoptosis, we determined the relationship between LPS-induced ceramide and PI 3-kinase activation in alveolar macrophages. We found that ceramide exposure activated PI 3-kinase and Akt. When we blocked LPS-induced ceramide with the inhibitor D609, we blocked LPS-induced PI 3-kinase and Akt activation. Evaluating cell survival after ceramide or LPS exposure, we found that blocking PI 3-kinase induced a significant increase in cell death. Because these effects of PI 3-kinase inhibition were more pronounced in ceramide- vs LPS-treated alveolar macrophages, we also evaluated NF-κB, which has also been linked to cell survival. We found that LPS, to a greater degree than ceramide, induced NF-κB translocation to the nucleus. As a composite, these studies suggest that the effects of ceramide exposure in alveolar macrophages may be very different from the effects described for other cell types. We believe that LPS induction of ceramide results in PI 3-kinase activation and represents a novel effector mechanism that promotes survival of human alveolar macrophages in the setting of pulmonary sepsis.
Two C-terminal deletion constructs were made to study the effect of such deletions on the biological activity of the CryV protein of Bacillus thuringiensis subsp. kurstaki. The results of feeding on neonatal larvae of Ostrinia nubilalis (European corn borer [ECB]) indicated that the 50% lethal dose of the full-length CryV protein was 3.34 g/g of diet (95% fiducial limits, 2.53 to 4.32 g/g of diet). Removal of 71 amino acids (aa) from the C terminus had little effect on toxicity, whereas deletion of 184 aa abolished the insecticidal activity of the CryV protein completely. Truncations of the full-length CryV protein were also generated with trypsin and the midgut protease of ECB. The proteolytically treated products were characterized by determining their Nterminal amino acid sequences. The CryV protein was found to be cleaved by both proteases through a two-step process. Initially an intermediary form was generated which contained aa 45 of full-length CryV as its N-terminal end. The C-terminal end of this peptide was not experimentally determined. However, analysis of the deduced amino acid sequence of CryV indicated that the C-terminal end of the intermediary form is likely either aa 655 or 659. Further N-terminal processing of the intermediary form resulted in a protease-resistant core form. The core included aa 156 to aa 655 or 659. While the intermediary form retained 100% of the ECB larval toxicity, the core form exhibited only ϳ22% of the toxicity of the full-length protein.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.