Purpose: Although novel agents targeting the androgen–androgen receptor (AR) axis have altered the treatment paradigm of metastatic castration-resistant prostate cancer (mCRPC), development of therapeutic resistance is inevitable. In this study, we examined whether AR gene aberrations detectable in circulating cell-free DNA (cfDNA) are associated with resistance to abiraterone acetate and enzalutamide in mCRPC patients. Experimental Design: Plasma was collected from 62 mCRPC patients ceasing abiraterone acetate (n = 29), enzalutamide (n = 19), or other agents (n = 14) due to disease progression. DNA was extracted and subjected to array comparative genomic hybridization (aCGH) for chromosome copy number analysis, and Roche 454 targeted next-generation sequencing of exon 8 in the AR. Results: On aCGH, AR amplification was significantly more common in patients progressing on enzalutamide than on abiraterone or other agents (53% vs. 17% vs. 21%, P = 0.02, χ2). Missense AR exon 8 mutations were detected in 11 of 62 patients (18%), including the first reported case of an F876L mutation in an enzalutamide-resistant patient and H874Y and T877A mutations in 7 abiraterone-resistant patients. In patients switched onto enzalutamide after cfDNA collection (n = 39), an AR gene aberration (copy number increase and/or an exon 8 mutation) in pretreatment cfDNA was associated with adverse outcomes, including lower rates of PSA decline ≥ 30% (P = 0.013, χ2) and shorter time to radiographic/clinical progression (P = 0.010, Cox proportional hazards regression). Conclusions: AR gene aberrations in cfDNA are associated with resistance to enzalutamide and abiraterone in mCRPC. Our data illustrate that genomic analysis of cfDNA is a minimally invasive method for interrogating mechanisms of therapeutic resistance in mCRPC. Clin Cancer Res; 21(10); 2315–24. ©2015 AACR.
Prostate cancer (PCA) is one of the most prevalent cancers and a major leading cause of morbidity and mortality in the Western world. The TMPRSS2-ERG fusion was recently identified as a common recurrent chromosomal aberration in this malignancy. In our study, we interrogated a broad spectrum of benign, precursor, and malignant prostatic lesions to assess the TMPRSS2-ERG fusion status using a multicolor interphase fluorescence in situ hybridization assay. Samples from hospital-based cohorts consisted of 237 clinically localized PCA, 34 hormone naive metastases, 9 hormone refractory metastases, 26 high grade prostatic intraepithelial neoplasia lesions, 15 samples of benign prostatic hyperplasia, 38 of proliferative inflammatory atrophy, and 47 of benign prostatic tissue. The TMPRSS2-ERG fusion was present in 48.5% of clinically localized PCA, 30% of hormone naive metastases, 33% of hormone refractory metastases, and in 19% of high grade prostatic intraepithelial neoplasia lesions in intermingling to cancer foci. Almost all these fusion positive cases show a homogenous distribution of the fusion pattern. In contrast, none of the other samples harbored this genetic aberration. If we consider the high incidence of PCA and the high frequency of this gene fusion, TMPRSS2-ERG is the most common genetic aberration so far described in human malignancies. Furthermore, its clinical application as a biomarker and ancillary diagnostic test is promising given its high specificity.
Noncovalent interactions between aromatic molecules are widely believed to be important contributing factors in the stabilization of organized structure in biological macromolecules. 1,2 Among the most significant aromatic-aromatic interactions are those found in helical nucleic acid structures. Since the identity of the nearest neighbors to a given base pair is the best single predictor of thermodynamics in DNA duplexes, 3 it is clear that aromatic π-π interactions are crucial to the stabilization of these structures. 4 While there have been a considerable number of theoretical studies aimed at modeling the π-π interaction in DNA, 5 there have been remarkably few experimental studies specifically addressing the thermodynamics of stacking (separate from base pairing) in DNA itself. 6 For that reason we have undertaken a study of aromatic stacking in the context of duplex DNA, and we hope to begin to elucidate what are the important forces which stabilize this organized structure. We report here the first experimental comparison of the stacking abilities of natural DNA bases and of nonnatural aromatic analogs in double-stranded DNA.To separate stacking from pairing (hydrogen-bonding) interactions in duplex DNA we placed the natural or nonnatural nucleotide of interest in a "dangling" position (without a pairing partner) at the end of a base-paired duplex (Figure 1). 7 The resulting stabilization of the duplex by the dangling base can be measured by thermal denaturation experiments, with comparison to the duplex lacking the added nucleotide.Electrostatic effects resulting from such localized charge have been implicated both in the stabilization and in the geometry of aromatic stacking. 5 To examine such effects we compared not only natural DNA bases but also nonpolar molecules with similar shape and surface area. Thus, we compared the DNA base thymine (1) and adenine (3) with their respective nonpolar isosteres difluorotoluene (2) and 4-methylindole (4). 9 We also compared the stacking of the aromatic hydrocarbons benzene (5), naphthalene (6), phenanthrene (7), and pyrene (8). The synthesis of these nucleoside analogs has been reported. [10][11][12][13] Results of the thermodynamic measurements made at pH 7.0 and 1 M NaCl are presented in Table 1 Supporting Information Available:Plots of thermodynamic data, sample thermal melting profiles, and proton NMR spectra (3 pages). See any current masthead page for ordering and Internet access instructions. Measurement of the duplexes with dangling thymine and adenine residues shows, perhaps not surprisingly, that the purine stacks on the duplex more strongly than the smaller pyrimidine base. The two unpaired deoxyadenosines add 2.0 kcal of stabilizing interaction to the selfcomplementary sequence, and thymines add 1.1 kcal to the duplex stability. This relative stacking ability is as predicted from nearest-neighbor parameters 3 and is consistent with dangling-end studies carried out in RNA. 7 Interestingly, the data show that the nonpolar DNA base mimics stack cons...
We describe the synthesis, structures, and DNA incorporation of deoxyribonucleosides carrying polycyclic aromatic hydrocarbons as the DNA "base" analogue. The new polycyclic compounds are 1-naphthyl, 2-naphthyl, 9-phenanthrenyl, and 1-pyrenyl deoxynucleosides. The compounds are synthesized using a recently developed C-glycosidic bond formation method involving organocadmium derivatives of the aromatic compounds coupling with a 1α-chlorodeoxyribose precursor. The principal products of this coupling are the α-anomers of the deoxyribosides. An efficient method has also been developed for epimerization of the α-anomers to β-anomers by acidcatalyzed equilibration; this isomerization is successfully carried out on the four polycyclic nucleosides as well as two substituted phenyl nucleosides. The geometry of the anomeric substitution is derived from 1 H NOE experiments and is also correlated with a single-crystal X-ray structure of one α-isomer. Three of the polycyclic C-nucleoside derivatives are incorporated into DNA oligonucleotides via their phosphoramidite derivatives; the pyrenyl and phenanthrenyl derivatives are shown to be fluorescent in a DNA sequence. The results (1) broaden the scope of our C-glycoside coupling reaction, (2) demonstrate that (using a new acid-catalyzed epimerization) both α-and β-anomers are easily synthesized, and (3) constitute a new class of deoxynucleoside derivatives. Such nucleoside analogues may be useful as biophysical probes for the study of noncovalent interactions such as aromatic π-stacking in DNA. In addition, the fluorescence of the phenanthrene and pyrene nucleosides may make them especially useful as structural probes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.