cAMP and cell-cell contact are involved in the coordination of differentiation and morphogenesis in Dictyostelium discoideum. The experiments described in this paper establish a relationship between cAMP and cell-cell contact. Contact between Enterobacter aerogenes and aggregation-competent Dictyostelium amoebae and contact between Dictyostelium amoebae themselves results in the transient secretion of cAMP and an alteration in the amount of cAMP secreted in response to subsequent stimulation by cAMP, i.e., an alteration in magnitude of a cAMP relay response. The subsequent cAMP relay response can be enhanced or diminished depending upon the number of contacts formed and the concentration of cAMP present at the time of contact. Latex beads are capable of evoking cAMP secretion. However, the bead/amoebal contact is unable to alter the magnitude of a subsequent response to cAMP. This suggests that a nonspecific interaction via cell-cell contact elicits transient cAMP secretion in aggregation-competent Dictyostelium amoebae. The two responses to cell-cell contact are distinct from each other and distinct from the cAMP relay response. 1) The dose-response curves for the responses to Enterobacter contact are clearly different. 2) Contact with latex beads can elicit cAMP secretion but not alter the magnitude of a subsequent cAMP relay response. 3) The temperature dependences of the contact-induced responses and the cAMP relay response show that only the contact-induced cAMP secretion is inhibited at 12 and 15 degrees C, while only the cAMP relay response is inhibited at 28 degrees C. A 4-second application of cAMP at the time that contact is initiated enhances both contact-induced responses. Whether the relationship between these two developmental regulators is important for the regulation of Dictyostelium development has yet to be established.
Cyclic adenosine 3':5' monophosphate (cAMP) and cell-cell contact regulate developmental gene expression in Dictyostelium discoideum. Developing D. discoideum amoebae synthesize and secrete cAMP following the binding of cAMP to their surface cAMP receptor, a response called cAMP signaling. We have demonstrated two responses of developing D. discoideum amoebae to cell-cell contact. Cell-cell contact elicits cAMP secretion and alters the amount of cAMP secreted in a subsequent cAMP signaling response. Depending upon experimental conditions, bacterial-amoebal contact and amoebal-amoebal contact can enhance or diminish the amount of cAMP secreted during a subsequent cAMP signaling response. We have hypothesized that cell-cell contact regulates D. discoideum development by altering cellular and extracellular levels of cAMP. To begin testing this hypothesis, these responses were further characterized. The two responses to cell-cell contact are independent, i.e., they can each occur in the absence of the other. The responses to cell-cell contact also have unique temperature dependences when compared to each other, cAMP signaling, and phagocytosis. This suggests that these four responses have unique steps in their transduction mechanisms. The secretion of cAMP in response to cell-cell contact appears to be a non-specific response; contact between D. discoideum amoebae and Enterobacter aerogenes, latex beads, or other amoebae elicits cAMP secretion. Despite the apparent similarities of the effects of bacterial-amoebal and amoebal-amoebal contact on the cAMP signaling response, this contact-induced response appears to be specific. Latex beads addition does not alter the magnitude of a subsequent cAMP signaling response.(ABSTRACT TRUNCATED AT 250 WORDS)
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.