SUMMARYTransient maintenance of a pluripotent embryonic cell population followed by the onset of multi-lineage commitment is a fundamental aspect of development. However, molecular regulation of this transition is not well characterized in vivo. Here, we demonstrate that the nuclear protein Geminin is required to restrain commitment and spatially restrict mesoderm, endoderm and non-neural ectoderm to their proper locations in the Xenopus embryo. We used microarray analyses to demonstrate that Geminin overexpression represses many genes associated with cell commitment and differentiation, while elevating expression levels of genes that maintain pluripotent early and immature neurectodermal cell states. We characterized the relationship of Geminin to cell signaling and found that Geminin broadly represses Activin-, FGF-and BMP-mediated cell commitment. Conversely, Geminin knockdown enhances commitment responses to growth factor signaling and causes ectopic mesodermal, endodermal and epidermal fate commitment in the embryo. We also characterized the functional relationship of Geminin with transcription factors that had similar activities and found that Geminin represses commitment independent of Oct4 ortholog (Oct25/60) activities, but depends upon intact Polycomb repressor function. Consistent with this, chromatin immunoprecipitation assays directed at mesodermal genes demonstrate that Geminin promotes Polycomb binding and Polycomb-mediated repressive histone modifications, while inhibiting modifications associated with gene activation. This work defines Geminin as an essential regulator of the embryonic transition from pluripotency through early multi-lineage commitment, and demonstrates that functional cooperativity between Geminin and Polycomb contributes to this process.
Embryonic cells utilize both growth factor signaling and cell intrinsic transcriptional and epigenetic regulation to acquire early cell fates. Underlying mechanisms that integrate these cues are poorly understood. Here we investigated the role of Geminin, a nucleoprotein that interacts with both transcription factors and epigenetic regulatory complexes, during fate acquisition of mouse embryonic stem cells. In order to determine Geminin’s role in mesendoderm formation, a process which occurs during embryonic gastrulation, we selectively over-expressed or knocked down Geminin in an in vitro model of differentiating mouse embryonic stem cells. We found that Geminin antagonizes mesendodermal fate acquisition, while these cells instead maintain elevated expression of genes associated with pluripotency of embryonic stem cells. During mesendodermal fate acquisition, Geminin knockdown promotes Wnt signaling, while Bmp, Fgf, and Nodal signaling are not affected. Moreover, we showed that Geminin facilitates the repression of mesendodermal genes that are regulated by the Polycomb repressor complex. Geminin directly binds several of these genes, while Geminin knockdown in mesendodermal cells reduces Polycomb repressor complex occupancy at these loci and increases trimethylation of histone H3 lysine 4, which correlates with active gene expression. Together, these results indicate that Geminin is required to restrain mesendodermal fate acquisition of early embryonic cells and that this is associated with both decreased Wnt signaling and enhanced Polycomb repressor complex retention at mesendodermal genes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.