Dysphagia, a difficulty eating or drinking, appears to increase with age and is a concern for our growing elderly population. Mastication, tongue mobility, and lip closure are skills of the oral phase of ingestion, and have been shown to deteriorate with age. However, it is not clear whether these changes affect functional feeding. It is also unclear whether dysphagia is the result of the aging process itself, or whether it is secondary to disease. Therefore, the purpose of this study was to identify changes during the oral phase of ingestion in a group of healthy seniors. Functional feeding skills and oral praxis abilities were measured in 79 healthy adults aged 60-97 years. The Modified Functional Feeding Assessment (FFAm) subscale of the Multidisciplinary Feeding Profile (MFP) and the Oral Praxis Subtest (OPS) of the Southern California Sensory Integration Test were administered respectively. An interview followed to obtain information on denture wear, use of hearing aids and glasses, and types of foods avoided. Seniors maintained functional feeding skills throughout the four decades studied. These skills were not age-dependent, but depended on whether or not subjects wore full dentures. Even though all of the seniors maintained functional feeding skills, more seniors in the younger group (7th decade 60%, 8th decade 67%) had difficulty with a variety of food textures such as soft, hard, fibrous, and some with tough skins, than the older group (9th decade 40%, 10th decade 44%). Oral praxis abilities were correlated significantly with age, but not with hearing aid use. Overall, healthy seniors maintained their functional feeding and oral praxis skills. Good health and natural dentition appear to be excellent indicators for functional feeding ability.
This study used an isolated-perfused tail-trunk preparation of rainbow trout to examine the uptake and release of lactate (Lac) and metabolic protons (delta H+M) in resting and exercised fish white muscle. In exercised muscle, L(+)-Lac efflux was inhibited (approximately 40%) by 5 mM alpha-cyano-4-hydroxycinnamate (CIN), but not by 0.5 mM 4-acetamido-4'-isothiocyanostilbene-2,2'-disulfonic acid (SITS) or 0.1 mM amiloride. These results suggest that Lac release occurs through a Lac(-)-H- symport and the free diffusion of lactic acid (HLac) or Lac-, but not via the Lac-/HCO3(-)-Cl- antiporter. Lac efflux was accompanied by delta H+m influx in all treatments, and increased delta H+m influx occurred after SITS treatment. In resting muscle, Lac uptake rates were greater than Lac efflux rates in the postexercise preparation. L-Lac influx exhibited partial saturation kinetics, whereas D(-)-Lac influx was linearly related to its extracellular concentration (0-32 mM). At 16 mM extracellular L-Lac, with a negligible transmembrane L-HLac gradient and an outwardly directed not driving force on L-Lac-, CIN, and SITS reduced net L-Lac uptake by 75 and 45%, respectively. At 16 mM extracellular concentration, D-Lac influx was 64% of the net L-Lac influx. These results suggest that in trout muscle at 16 mM extracellular L-Lac, the Lac -H+ symport accounts for 30-36%, the Lac-/HCO3(-)-Cl- antiport for 39-45%, and diffusion for 19-25% of uptake, although the latter is probably overestimated and the former underestimated for methodological reasons. Net L-Lac efflux was not affected by extracellular D-Lac concentration and/or D-Lac influx, implying the existence of a concurrent L-Lac efflux during L-Lac influx. The D-Lac influx kinetics data indicated that the Lac-/HCO3 antiport was not saturable in the extracellular D-Lac concentration range of 0-32 mM. This study clearly demonstrates the involvement of carrier-mediated transport in transmembrane Lac movement in fish muscle and supports the "active lactate retention" mechanism proposed by Turner and Wood (J. Exp. Biol. 105: 895-401, 1983).
Electrical stimulation of a trout saline-perfused trunk preparation resulted in metabolic and respiratory responses comparable to those occurring after exhaustive exercise in vivo. Recovery of intracellular acid-base status and glycogen resynthesis were faster than in vivo. Intracellular carbonic anhydrase (ICF CA) blockade elevated intracellular[Formula: see text] relative to untreated postexercise controls, whereas extracellular CA (ECF CA) blockade did not, in contrast to previous work with muscle at rest. ECF CA blockade had only a transient effect on postexercise CO2 and ammonia efflux. The relatively small pool of membrane-associated CA appears to be overwhelmed by exercise-induced CO2 production in muscle. Transmembrane ammonia efflux appears to shift from diffusion primarily as NH3 at rest, which is facilitated by ECF CA, to movement predominantly as[Formula: see text] after exercise, which is independent of CA. The postponed recovery of intracellular pH caused by either or both ECF and ICF CA inhibition was consistent with reduced metabolic acid and lactate excretion from muscle. Creatine phosphate resynthesis was delayed by CA inhibition, whereas ATP replenishment was not affected. Delayed glycogen recovery indicates that[Formula: see text]-dependent pathway(s) may be involved in glyconeogenesis.
Net ammonia fluxes (JAmm) were measured in adult freshwater rainbow trout in vivo under a variety of conditions designed to inhibit unidirectional sodium uptake (JinNa; low external [NaCl], 10(-4) mol l-1 amiloride), alter transbranchial PNH3 and NH4+ gradients [24 h continuous (NH4)2SO4 infusion, or exposure to 1 mmol l-1 external total ammonia at pH 8] and prevent gill boundary layer acidification (5 mmol l-1 Hepes buffer). Inhibition of JinNa with amiloride or low external [NaCl] under normal conditions reduced JAmm by about 20 %, but did not prevent the net excretion of ammonia during exposure to high concentrations of external ammonia. Increasing the buffer capacity of the ventilatory water with Hepes buffer (pH 8) reduced JAmm by 36 % and abolished the effect of amiloride on ammonia excretion. No evidence could be found to support a directly coupled apical Na+/NH4+ exchange. We suggest that any dependence of ammonia excretion on sodium uptake is caused by alteration of transbranchial PNH3 gradients within the gill microenvironment secondary to changes in net H+ excretion. Under normal conditions (pH 8, low external ammonia) gill boundary layer acidification facilitates over one-third of the total ammonia excretion. During exposure to high concentrations of external ammonia in poorly buffered water, estimates of transbranchial PNH3 gradients from measurements of bulk water pH and total ammonia concentration (TAmm) may be grossly in error because of boundary layer acidification. Prevention of boundary layer acidification with Hepes buffer during exposure to high cocncentrations of external ammonia revealed that the local transbranchial PNH3 gradient at the gill may in fact be positive (blood to water), negating the need for an active NH4+ transport mechanism. In freshwater trout, NH3 diffusion may account for all ammonia excretion under all experimental conditions used in the present study.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.