In four experiments, we tested the existence of an ideal facial feature arrangement that could optimize the attractiveness of any face given its facial features. Participants made paired comparisons of attractiveness between faces with identical facial features but different eye-mouth distances and different interocular distances. We found that although different faces have varying attractiveness, individual attractiveness is optimized when the face’s vertical distance between the eyes and the mouth is approximately 36% of its length, and the horizontal distance between the eyes is approximately 46% of the face’s width. These “new” golden ratios match those of an average face.
Bruce and Young (1986) proposed a model for face processing that begins with structural encoding, followed by a split into two processing streams: one for the dynamic aspects of the face (e.g., facial expressions of emotion) and the other for the invariant aspects of the face (e.g., gender, identity). Yet how this is accomplished remains unclear. Here, we took a psychophysical approach using contrast negation to test the Bruce and Young model. Previous research suggests that contrast negation impairs processing of invariant features (e.g., gender) but not dynamic features (e.g., expression). In our first experiment, participants discriminated differences in gender and facial expressions of emotion in upright, inverted, and contrast-negated faces. Results revealed a profound impairment for contrast-negated gender discrimination, whereas expression discrimination remained relatively robust to contrast negation. To test whether this differential effect occurs during perceptual encoding, we conducted three additional experiments in which we measured aftereffects following upright, inverted, or contrast-negated face adaptation for the same discrimination task as in the first experiment. Results showed a mild impairment with contrast negation during perceptual encoding for both gender and expression, followed by a marked gender-specific deficit during contrast-negated face discrimination. Taken together, our results suggest that there are shared neural mechanisms during perceptual encoding, and at least partially separate neural mechanisms during recognition and decision making for dynamic and invariant facial-feature processing.
The current study tested fine discrimination of upright and inverted faces and objects in adolescents with Autism Spectrum Disorder (ASD) as compared to age- and IQ-matched controls. Discrimination sensitivity was tested using morphed faces and morphed objects, and all stimuli were equated in low-level visual characteristics (luminance, contrast, spatial frequency make-up). Participants with ASD exhibited slight, non-significant impairments in discrimination sensitivity for faces, yet significantly enhanced discrimination sensitivity for objects. The ASD group also showed a protracted development of face and object inversion effects. Finally, for ASD participants, face sensitivity improved with increasing IQ while object sensitivity improved with age. By contrast, for controls, face sensitivity improved with age, but neither face nor object sensitivity was influenced by IQ. These findings suggest that individuals with ASD follow a qualitatively different path in the development of face and object processing abilities.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.