Acute inflammation in response to both exogenous and endogenous danger signals can lead to the assembly of cytoplasmic inflammasomes that stimulate the activation of caspase-1. Subsequently, caspase-1 facilitates the maturation and release of cytokines and also, under some circumstances, the induction of cell death by pyroptosis. Using a mouse line lacking expression of NLRP1, we show that assembly of this inflammasome in cells is triggered by a toxin from Anthrax and that it initiates caspase-1 activation and release of IL-1β. Furthermore, NLRP1 inflammasome activation also leads to cell death, which escalates over three days following exposure to the toxin and culminates in acute lung injury and death of the mice. We show that these events are not dependent on production of IL-1β by the inflammasome but are dependent on caspase-1 expression. In contrast, MDP mediated inflammasome formation is not dependent on NLRP1, but NLRP3. Taken together, our findings show that assembly of the NLRP1 inflammasome is sufficient to initiate pyroptosis, which subsequently leads to a self-amplifying cascade of cell injury within the lung from which the lung cannot recover, eventually resulting in catastrophic consequences for the organism.
Familial Mediterranean Fever (FMF) is an inherited autoinflammatory disorder characterized by unprovoked episodes of fever and inflammation. The associated gene, MEFV (Mediterranean Fever), is expressed primarily by cells of myeloid lineage and encodes the protein pyrin/TRIM20/Marenostrin. The mechanism by which mutations in pyrin alter protein function to cause episodic inflammation is controversial. To address this question, we have generated a mouse line lacking the Mefv gene by removing a 21 kb fragment containing the entire Mefv locus. While the development of immune cell populations appears normal in these animals, we show enhanced interleukin (IL) 1β release by Mefv
−/− macrophages in response to a spectrum of inflammatory stimuli, including stimuli dependent on IL-1β processing by the NLRP1b, NLRP3 and NLRC4 inflammasomes. Caspase-1 activity, however, did not change under identical conditions. These results are consistent with a model in which pyrin acts to limit the release of IL-1β generated by activation and assembly of inflammasomes in response to subclinical immune challenges.
Natural killer (NK) cells were originally identified as lymphocytes capable of killing cancer cells without prior sensitization (1). Further characterization of these cells in both humans and rodent models has expanded their role towards a broad-based immunosurveillance of diseased and healthy peripheral tissues. Among peripheral organs, the lung contains the largest percentage of NK cells. Accordingly, NK cells are implicated in many immunological responses within the lung, including innate effector functions as well as initiation of the adaptive immune response. In this article, we review the characteristics of NK cells, current models of NK maturation and cell activation, migration of NKs to the lung, and effector functions of NKs in cancer and infection in the airways. Specific emphasis is placed on the functional significance of NKs in cancer immunosurveillance. Therapeutic modulation of NK cells appears to be a challenging but promising approach to limit cancer, inflammation, and infection in the lung.
Background: Genetic deletion of PLC␥2 prevents osteoclast differentiation and reduces bone resorption in vitro and in vivo. Results: Ectopic expression of the tandem SH2 domains of PLC␥2 impairs osteoclastogenesis and protects from bone loss in wild-type mice. Conclusion: Targeting PLC␥2 adaptor function is an efficient strategy to block osteoclast differentiation. Significance: This work provides a framework to design specific PLC␥2 inhibitors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.