Composition of the gut microbiota has profound effects on intestinal carcinogenesis. Diet and host genetics play critical roles in shaping the composition of gut microbiota. Whether diet and host genes interact with each other to bring specific changes in gut microbiota that affect intestinal carcinogenesis is unknown. Ability of dietary fibre to specifically increase beneficial gut microbiota at the expense of pathogenic bacteria in vivo via unknown mechanism is an important process that suppresses intestinal inflammation and carcinogenesis. Free fatty acid receptor 2 (FFAR2 or GPR43) is a receptor for short-chain fatty acids (acetate, propionate and butyrate), metabolites of dietary fibre fermentation by gut microbiota. Here, we show FFAR2 is down modulated in human colon cancers than matched adjacent healthy tissue. Consistent with this, Ffar2−/− mice are hypersusceptible to development of intestinal carcinogenesis. Dietary fibre suppressed colon carcinogenesis in an Ffar2-dependent manner. Ffar2 played an essential role in dietary fibre-mediated promotion of beneficial gut microbiota, Bifidobacterium species (spp) and suppression of Helicobacter hepaticus and Prevotellaceae. Moreover, numbers of Bifidobacterium is reduced, whereas those of Prevotellaceae are increased in human colon cancers than matched adjacent normal tissue. Administration of Bifidobacterium mitigated intestinal inflammation and carcinogenesis in Ffar2−/− mice. Taken together, these findings suggest that interplay between dietary fibre and Ffar2 play a key role in promoting healthy composition of gut microbiota that stimulates intestinal health.
A set of coordinated interactions between gut microbiota and the immune cells surveilling the intestine play a key role in shaping local immune responses and intestinal health. Gpr109a is a G protein-coupled receptor expressed at a very high level on innate immune cells and previously shown to play a key role in the induction of colonic regulatory T cells. In this study, we show that mice exhibit spontaneous rectal prolapse and colonic inflammation, characterized by the presence of an elevated number of IL-17-producing Rorγt innate lymphoid cells (ILCs; ILC3). Genetic deletion of Rorγt alleviated the spontaneous colonic inflammation in mice. Gpr109a-deficient colonic dendritic cells produce higher amounts of IL-23 and thereby promote ILC3. Moreover, the depletion of gut microbiota by antibiotics treatment decreased IL-23 production, ILC3, and colonic inflammation in mice. The ceca of mice showed significantly increased colonization by members of, ,, , and, as well as IBD-associated microbiota such as and, compared with mice, housed in a facility positive for and murine norovirus. Niacin, a Gpr109a agonist, suppressed both IL-23 production by colonic DCs and ILC3 number in a Gpr109a-dependent manner. Collectively, our data present a model suggesting that targeting Gpr109a will be potentially beneficial in the suppression of IL-23-mediated immunopathologies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.