The consumption of fructose during pregnancy can cause hyperglycaemia and may stimulate production of reactive oxygen species; however, there are only a few studies reporting whether fructose consumption during pregnancy causes DNA damage. Therefore, the aim of this study was to evaluate the effects of fructose consumption on genetic and biochemical parameters in Swiss mice treated during pregnancy and lactation. For this, 15 couples of 60-day-old Swiss mice were divided into three groups of five couples: negative control (water) and two fructose groups (fructose dose of 10%/l and 20%/l). During this period, we evaluated food consumption, energy efficiency and body weight. Samples of blood were collected from the females before copulation, after the 15th day of conception and on the 21st day after the lactation period, for the glycaemic and lipid profiles as well as comet assay and micronucleus (MN) test. Comet assay and MN test evaluate DNA damage and clastogenicity, respectively. In the gestation and lactation period, the two fructose doses tested showed DNA damage as observed in the comet assay, which is associated with an increase in dietary intake, body weight, lipid profile and fasting glycaemia in females. Thus, it can be suggested that the high consumption of fructose during these periods is harmful for pregnancy and lactation.
Fructose (C6H12O6), also known as levulose, is a hexose. Chronic consumption of fructose may be associated with increased intrahepatic fat concentration and the development of insulin resistance as well as an increase in the prevalence of nonalcoholic fatty liver disease and hyperlipidemia during pregnancy. Despite the existence of many studies regarding the consumption of fructose in pregnancy, its effects on fetuses have not yet been fully elucidated. Therefore, the objective of this study was to evaluate the genetic and biochemical effects in offspring (male and female) of female mice treated with fructose during pregnancy and lactation. Pairs of 60-day-old Swiss mice were used and divided into three groups; negative control and fructose, 10%/l and 20%/l doses of fructose groups. After offspring birth, the animals were divided into six groups: P1 and P2 (males and females), water; P3 and P4 (males and females) fructose 10%/l; and P5 and P6 (males and females) fructose 20%/l. At 30 days of age, the animals were euthanized for genetic and biochemical assessments. Female and male offspring from both dosage groups demonstrated genotoxicity (evaluated through comet assay) and oxidative stress (evaluated through nitrite concentration, sulfhydril content and superoxide dismutase activity) in peripheral and brain tissues. In addition, they showed nutritional and metabolic changes due to the increase in food consumption, hyperglycemia, hyperlipidemia, and metabolic syndrome. Therefore, it is suggested that high consumption of fructose by pregnant female is harmful to their offspring. Thus, it is important to carry out further studies and make pregnant women aware of excessive fructose consumption during this period.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.