Candidate antibacterials are usually identified on the basis of their in vitro activity. However, the apparent inhibitory activity of new leads can be misleading because most culture media do not reproduce an environment relevant to infection in vivo. In this study, while screening for novel anti-tuberculars, we uncovered how carbon metabolism can affect antimicrobial activity. Novel pyrimidine–imidazoles (PIs) were identified in a whole-cell screen against Mycobacterium tuberculosis. Lead optimization generated in vitro potent derivatives with desirable pharmacokinetic properties, yet without in vivo efficacy. Mechanism of action studies linked the PI activity to glycerol metabolism, which is not relevant for M. tuberculosis during infection. PIs induced self-poisoning of M. tuberculosis by promoting the accumulation of glycerol phosphate and rapid ATP depletion. This study underlines the importance of understanding central bacterial metabolism in vivo and of developing predictive in vitro culture conditions as a prerequisite for the rational discovery of new antibiotics.
New chemotherapeutic compounds against multidrug-resistant Mycobacterium tuberculosis (Mtb) are urgently needed to combat drug resistance in tuberculosis (TB). We have identified and characterized the indolcarboxamides as a new class of antitubercular bactericidal agent. Genetic and lipid profiling studies identified the likely molecular target of indolcarboxamides as MmpL3, a transporter of trehalose monomycolate that is essential for mycobacterial cell wall biosynthesis. Two lead candidates, NITD-304 and NITD-349, showed potent activity against both drug-sensitive and multidrug-resistant clinical isolates of Mtb. Promising pharmacokinetic profiles of both compounds after oral dosing in several species enabled further evaluation for efficacy and safety. NITD-304 and NITD-349 were efficacious in treating both acute and chronic Mtb infections in mouse efficacy models. Furthermore, dosing of NITD-304 and NITD-349 for 2 weeks in exploratory rat toxicology studies revealed a promising safety margin. Finally, neither compound inhibited the activity of major cytochrome P-450 enzymes or the hERG (human ether-a-go-go related gene) channel. These results suggest that NITD-304 and NITD-349 should undergo further development as a potential treatment for multidrug-resistant TB.
Growing evidence suggests that the presence of a subpopulation
of hypoxic non-replicating, phenotypically drug-tolerant mycobacteria
is responsible for the prolonged duration of tuberculosis treatment.
The discovery of new antitubercular agents active against this subpopulation
may help in developing new strategies to shorten the time of tuberculosis
therapy. Recently, the maintenance of a low level of bacterial respiration
was shown to be a point of metabolic vulnerability in Mycobacterium
tuberculosis. Here, we describe the development of a hypoxic
model to identify compounds targeting mycobacterial respiratory functions
and ATP homeostasis in whole mycobacteria. The model was adapted to
1,536-well plate format and successfully used to screen over 600,000
compounds. Approximately 800 compounds were confirmed to reduce intracellular
ATP levels in a dose-dependent manner in Mycobacterium bovis BCG. One hundred and forty non-cytotoxic compounds with activity
against hypoxic non-replicating M. tuberculosis were
further validated. The resulting collection of compounds that disrupt
ATP homeostasis in M. tuberculosis represents a valuable
resource to decipher the biology of persistent mycobacteria.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.