Background-Accumulating evidence suggests that the ubiquitous anion nitrite (NO 2 Ϫ ) is a physiological signaling molecule, with roles in intravascular endocrine nitric oxide transport, hypoxic vasodilation, signaling, and cytoprotection. Thus, nitrite could enhance the efficacy of reperfusion therapy for acute myocardial infarction. The specific aims of this study were (1) to assess the efficacy of nitrite in reducing necrosis and apoptosis in canine myocardial infarction and (2) to determine the relative role of nitrite versus chemical intermediates, such as S-nitrosothiols. Methods and Results-We evaluated infarct size, microvascular perfusion, and left ventricular function by histopathology, microspheres, and magnetic resonance imaging in 27 canines subjected to 120 minutes of coronary artery occlusion. This was a blinded, prospective study comparing a saline control group (nϭ9) with intravenous nitrite during the last 60 minutes of ischemia (nϭ9) and during the last 5 minutes of ischemia (nϭ9). In saline-treated control animals, 70Ϯ10% of the area at risk was infarcted compared with 23Ϯ5% in animals treated with a 60-minute nitrite infusion. Remarkably, a nitrite infusion in the last 5 minutes of ischemia also limited the extent of infarction (36Ϯ8% of area at risk). Nitrite improved microvascular perfusion, reduced apoptosis, and improved contractile function. S-Nitrosothiol and iron-nitrosyl-protein adducts did not accumulate in the 5-minute nitrite infusion, suggesting that nitrite is the bioactive intravascular nitric oxide species accounting for cardioprotection. Conclusions-Nitrite has significant potential as adjunctive therapy to enhance the efficacy of reperfusion therapy for acute myocardial infarction. (Circulation. 2008;117:2986-2994.)
Cell-based therapies have been employed with conflicting results. Whether direct injection of ex-vivo expanded autologous marrow stromal cells (MSCs) would improve the function of ischemic myocardium and enhance angiogenesis is not well defined. In a porcine model of chronic ischemia, MSCs were isolated and cultured for 4 weeks. Sixteen animals were random divided into two groups to receive either direct intramyocardial injection of autologous MSCs, or equal volumes and injections sites of saline. Cine MRI and epicardial echocardiography were performed just prior to the injections and again 6 weeks later at the time of sacrifice at which point tissue was also analyzed. Myocardial function as assessed by regional wall thickening (as measured by dobutamine stress echocardiograms) demonstrated a 40.9% improvement after cell treatment of the ischemic zone (p = 0.016) whereas the saline treated animals only had a 3.7% change (p = 0.82) compared to baseline. The left ventricular ejection fractions of MSC group showed 19.5% improvement from baseline 35.9 ± 3.8% to 42.9 ± 5.8% (p = 0.049). Increased vascularity was found in the MSC group compared to controls (0.80 ± 0.30 vs 0.50 ± 0.19 capillary/myocyte ratio, p = 0.018). Direct injection of autologous MSCs promotes angiogenesis and enhances the functional improvements following chronic myocardial ischemia. This suggests that the angiogenesis engendered by cell treatment may be physiologically meaningful by improving the contractility of ischemic myocardium.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.