The transcription factors NsdC and NsdD are required for sexual development in Aspergillus nidulans. We now show these proteins also play a role in asexual development in the agriculturally important aflatoxin (AF)-producing fungus Aspergillus flavus. We found that both NsdC and NsdD are required for production of asexual sclerotia, normal aflatoxin biosynthesis, and conidiophore development. Conidiophores in nsdC and nsdD deletion mutants had shortened stipes and altered conidial heads compared to those of wild-type A. flavus. Our results suggest that NsdC and NsdD regulate transcription of genes required for early processes in conidiophore development preceding conidium formation. As the cultures aged, the ⌬nsdC and ⌬nsdD mutants produced a dark pigment that was not observed in the wild type. Gene expression data showed that although AflR is expressed at normal levels, a number of aflatoxin biosynthesis genes are expressed at reduced levels in both nsd mutants. Expression of aflD, aflM, and aflP was greatly reduced in nsdC mutants, and neither aflatoxin nor the proteins for these genes could be detected. Our results support previous studies showing that there is a strong association between conidiophore and sclerotium development and aflatoxin production in A. flavus.
eThe global regulatory veA gene governs development and secondary metabolism in numerous fungal species, including Aspergillus flavus. This is especially relevant since A. flavus infects crops of agricultural importance worldwide, contaminating them with potent mycotoxins. The most well-known are aflatoxins, which are cytotoxic and carcinogenic polyketide compounds. The production of aflatoxins and the expression of genes implicated in the production of these mycotoxins are veA dependent. The genes responsible for the synthesis of aflatoxins are clustered, a signature common for genes involved in fungal secondary metabolism. Studies of the A. flavus genome revealed many gene clusters possibly connected to the synthesis of secondary metabolites. Many of these metabolites are still unknown, or the association between a known metabolite and a particular gene cluster has not yet been established. In the present transcriptome study, we show that veA is necessary for the expression of a large number of genes. Twenty-eight out of the predicted 56 secondary metabolite gene clusters include at least one gene that is differentially expressed depending on presence or absence of veA. One of the clusters under the influence of veA is cluster 39. The absence of veA results in a downregulation of the five genes found within this cluster. Interestingly, our results indicate that the cluster is expressed mainly in sclerotia. Chemical analysis of sclerotial extracts revealed that cluster 39 is responsible for the production of aflavarin.A spergillus flavus is a saprophytic filamentous fungus that is also able to colonize economically important crops such as peanuts, cotton, maize, and other oil seed crops during preharvest or storage. Its most efficient mode of dissemination is the production of airborne conidia. In addition, A. flavus produces resistant structures called sclerotia, which allow this fungus to survive adverse environmental conditions for long periods of time (1-3). This opportunistic pathogen produces a wide range of secondary metabolites, including aflatoxins (AFs). Among them, AFB1 is the most mutagenic and carcinogenic natural compound known (4-8). Ingestion of food products contaminated with AFs has been associated with hepatotoxicity, teratogenicity, immunosuppression, and liver cancer (6, 9). AF contamination also results in a negative impact on the economy in developed countries. In the United States alone A. flavus causes more than a billion dollar in losses per year due to contaminated crops (10). In addition to AFs, A. flavus is known to produce other mycotoxins, including cyclopiazonic acid (CPA), a suppressor of the calcium-dependent ATPase in the sarcoplasmic reticulum, and aflatrem, a tremogenic mycotoxin causative of neurological disorders (11,12).Studies of the A. flavus genome have revealed many gene clusters possibly connected to the synthesis of other secondary metabolites. Specifically, 55 different clusters were predicted based on the presence of genes encoding polyketide synthases (PKSs), non...
Survival of fungal species depends on the ability of these organisms to respond to environmental stresses. Osmotic stress or high levels of reactive oxygen species (ROS) can cause stress in fungi resulting in growth inhibition. Both eukaryotic and prokaryotic cells have developed numerous mechanisms to counteract and survive the stress in the presence of ROS. In many fungi, the HOG signaling pathway is crucial for the oxidative stress response as well as for osmotic stress response. This study revealed that while the osmotic stress response is only slightly affected by the master regulator veA, this gene, also known to control morphological development and secondary metabolism in numerous fungal species, has a profound effect on the oxidative stress response in the aflatoxin-producing fungus Aspergillus flavus. We found that the expression of A. flavus homolog genes involved in the HOG signaling pathway is regulated by veA. Deletion of veA resulted in a reduction in transcription levels of oxidative stress response genes after exposure to hydrogen peroxide. Furthermore, analyses of the effect of VeA on the promoters of cat1 and trxB indicate that the presence of VeA alters DNA-protein complex formation. This is particularly notable in the cat1 promoter, where the absence of VeA results in abnormally stronger complex formation with reduced cat1 expression and more sensitivity to ROS in a veA deletion mutant, suggesting that VeA might prevent binding of negative transcription regulators to the cat1 promoter. Our study also revealed that veA positively influences the expression of the transcription factor gene atfB and that normal formation of DNA-protein complexes in the cat1 promoter is dependent on AtfB.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.