SUMMARY Loss of FMRP causes Fragile X syndrome (FXS), but the physiological functions of FMRP remain highly debatable. Here we show that FMRP regulates neurotransmitter release in CA3 pyramidal neurons by modulating action potential (AP) duration. Loss of FMRP leads to excessive AP broadening during repetitive activity, enhanced presynaptic calcium influx and elevated neurotransmitter release. The AP broadening defects caused by FMRP loss have a cell-autonomous presynaptic origin and can be acutely rescued in postnatal neurons. These presynaptic actions of FMRP are translation-independent and are mediated selectively by BK channels via interaction of FMRP with BK channel’s regulatory β4 subunits. Information-theoretical analysis demonstrates that loss of these FMRP functions causes marked dysregulation of synaptic information transmission. FMRP-dependent AP broadening is not limited to the hippocampus, but also occurs in cortical pyramidal neurons. Our results thus suggest major translation-independent presynaptic functions of FMRP that may have important implications for understanding FXS neuropathology.
SUMMARY The promise of using reprogrammed human neurons for disease modeling and regenerative medicine relies on the ability to induce patient-derived neurons with high efficiency and subtype-specificity. We have previously shown that ectopic expression of brain-enriched microRNAs (miRNA), miR-9/9* and miR-124 (miR-9/9*-124), promoted direct conversion of human fibroblasts into neurons. Here we show that co-expression of miR-9/9*-124 with transcription factors enriched in the developing striatum, BCL11B (also known as CTIP2), DLX1, DLX2, MYT1L, can guide the conversion of human postnatal and adult fibroblasts into an enriched population of neurons analogous to striatal medium spiny neurons (MSNs). When transplanted in the mouse brain, the reprogrammed human cells persisted in situ for over 6 months, exhibited membrane properties equivalent to native MSNs and extended projections to the anatomical targets of MSNs. These findings highlight the potential of exploiting the synergism between miR-9/9*-124 and transcription factors to generate specific neuronal subtypes.
Fragile X syndrome (FXS) is the most common inherited form of intellectual disability and the leading genetic cause of autism. It is associated with the lack of fragile X mental retardation protein (FMRP), a regulator of protein synthesis in axons and dendrites. Studies on FXS have extensively focused on the postsynaptic changes underlying dysfunctions in long-term plasticity. In contrast, the presynaptic mechanisms of FXS have garnered relatively little attention and are poorly understood. Activity-dependent presynaptic processes give rise to several forms of short-term plasticity (STP), which is believed to control some of essential neural functions, including information processing, working memory, and decision making. The extent of STP defects and their contributions to the pathophysiology of FXS remain essentially unknown, however. Here we report marked presynaptic abnormalities at excitatory hippocampal synapses in Fmr1 knock-out (KO) mice leading to defects in STP and information processing. Loss of FMRP led to enhanced responses to high-frequency stimulation. Fmr1 KO mice also exhibited abnormal synaptic processing of natural stimulus trains, specifically excessive enhancement during the high-frequency spike discharges associated with hippocampal place fields. Analysis of individual STP components revealed strongly increased augmentation and reduced short-term depression attributable to loss of FMRP. These changes were associated with exaggerated calcium influx in presynaptic neurons during high-frequency stimulation, enhanced synaptic vesicle recycling, and enlarged readily-releasable and reserved vesicle pools. These data suggest that loss of FMRP causes abnormal STP and information processing, which may represent a novel mechanism contributing to cognitive impairments in FXS.
Fragile X syndrome (FXS) results in intellectual disability (ID) most often caused by silencing of the fragile X mental retardation 1 (FMR1) gene. The resulting absence of fragile X mental retardation protein 1 (FMRP) leads to both pre-and postsynaptic defects, yet whether the pre-and postsynaptic functions of FMRP are independent and have distinct roles in FXS neuropathology remain poorly understood. Here, we demonstrate an independent presynaptic function for FMRP through the study of an ID patient with an FMR1 missense mutation. This mutation, c.413G > A (R138Q), preserves FMRP's canonical functions in RNA binding and translational regulation, which are traditionally associated with postsynaptic compartments. However, neuronally driven expression of the mutant FMRP is unable to rescue structural defects at the neuromuscular junction in fragile x mental retardation 1 (dfmr1)-deficient Drosophila, suggesting a presynaptic-specific impairment. Furthermore, mutant FMRP loses the ability to rescue presynaptic action potential (AP) broadening in Fmr1 KO mice. The R138Q mutation also disrupts FMRP's interaction with the large-conductance calciumactivated potassium (BK) channels that modulate AP width. These results reveal a presynaptic-and translation-independent function of FMRP that is linked to a specific subset of FXS phenotypes.F ragile X syndrome (FXS) is the most common single-gene disorder responsible for intellectual disability (ID) in patients (1). Along with cognitive dysfunction, the syndrome typically presents with several other comorbidities, including behavioral and social impairments (anxiety and autism spectrum disorder), neurological defects (seizures and abnormal sleep patterns), and morphological abnormalities (dysmorphic facies and macroorchidism). Most patients inherit the syndrome through a maternal repeat expansion mutation that transcriptionally silences the FMR1 gene and results in loss of the gene product, FMRP.FMRP has complex multifaceted functions at synapses both in pre-and postsynaptic compartments. As an RNA binding protein, FMRP is best known for its function as a translation regulator in dendrites (2). Loss of FMRP has been linked to various forms of long-term synaptic plasticity defects that depend on local protein synthesis in the postsynaptic neuron (3). In addition to disrupted metabotropic glutamate receptor signaling, which has been shown across multiple brain regions (4-7), FMRP is necessary for activitydependent protein synthesis downstream of other signaling receptor pathways, including ACh, dopamine, and TrkB (8-10).Although postsynaptic control of translation is believed to be the dominant function of FMRP, it is unable to explain all of the pathophysiology observed in FXS animal models. For instance, in Drosophila, presynaptic expression of the FMR1 homolog, dfmr1, completely rescues the synaptic overgrowth phenotype at the neuromuscular junction (NMJ) in dfmr1-null mutants (11-13). In rodent brain, FMRP has been found in structures called fragile-X granules, which are ...
Measurements of action potential duration in Figures 1, 3, 5G, 6D, and S1 display an apparent three-point periodicity. We clarify that this effect results from using 60 Hz stimulus trains that have fractional 16.67 ms interstimulus intervals (ISIs). Because of software rounding of submillisecond timing to a whole millisecond, every third ISI is 1 ms shorter in these stimulus trains, causing periodicity in the data. This periodicity was no longer apparent when 58.8 Hz trains (with a constant 17 ms ISIs) were used instead in the same neurons (see Figure E1 shown here). Because of the precision of AP duration determination and its strong dependence on ISI, this periodicity is apparent in all recordings of AP duration at 60 Hz, but not in recordings of synaptic transmission, in which the noise is dominated by the intrinsic stochasticity of release. This effect is very small (<2%) and is present in all recordings. This clarification is now presented in the figure shown here. In addition, two units of measure have been corrected on page 10 of the Supplemental Information.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.