Background The distant metastasis of cancer cells is a risk factor for tumor lethality and poor prognosis in non-small-cell lung carcinoma (NSCLC). Increased SOX9 expression has been associated with clinical stage and poor prognosis in NSCLC, but the molecular mechanisms by which SOX9 promotes metastasis in NSCLC are still unknown. Methods The relationship between SOX9 expression and T, N, M classification was assessed using the χ 2 test and Spearman’s analysis in 142 immunohistochemically diagnosed specimens of NSCLC. We also generated SOX9-overexpression and SOX9-knockdown cells lines and their corresponding control cell lines by transfection with lentiviral constructs. In vivo assay, SOX9-overexpressing and SOX9-knockdown NSCLC cells were injected in zebrafish to examine distance metastasis. Gene set enrichment analysis (GSEA) was applied to analysis the correlation between SOX9 overexpression and Wnt/β-catenin pathway. Luciferase assay was used to check transcriptional activity of TCF/LEF and western blot and immunofluorescence was employed to detect β-catenin translocation in SOX9-overexpression, SOX9-knockdown and their corresponding control cell lines. Results We found that SOX9 overexpression correlates with the T, N and M stage significantly ( p = 0.03, 0.000, and 0.032 respectively) in 142 immunohistochemically diagnosed specimens of NSCLC. SOX9 overexpression was found to decrease the expression of the epithelial cell markers E-cadherin and γ-catenin and increase the expression of the mesenchymal cell markers N-cadherin and vimentin. An in vivo assay showed distant metastasis of the SOX9-overexpressing cells, which was not observed in the SOX9-knockdown cells. These findings indicate that SOX9 promotes distant metastasis by promoting EMT in NSCLC cells. GSEA showed that SOX9 overexpression was significantly correlated with the Wnt/β-catenin pathway which was corroborated by the expression of EMT-associated proteins in this pathway and its downstream target genes. SOX9 overexpression was also found to enhance the transcriptional activity of TCF/LEF, promote the nuclear translocation of β-catenin and increase the phosphorylation of GSK3β at Ser9. Further, inhibition of β-catenin suppressed the metastasis-promoting effects of SOX9 overexpression. Conclusions This study is the first to report that SOX9 is associated with clinical TNM stage and indicates that SOX9 promotes migration, invasion and the EMT process through the Wnt/β-catenin pathway.
In order to explore the effect of pretreatment on corn straw degradation and biogas production, corn straw was pretreated with mixed microbes and composting at 30°C for 14 days. The characteristics of material were measured and analyzed in the pretreatment process. Then, the pretreated and untreated corn straw was digested by anaerobic fermentation. Gas production and methane content of corn straw were analyzed. The results showed that the biological pretreatment process with mixed microbes could accelerate the degradation rate of straw and increase the degradation efficiency of lignin. The pH value of material was more stable, and the content of organic matter in the material was higher in the pretreatment process of corn straw with mixed microbes. The Scanning Electron Microscope (SEM) images showed that the structure of the lignocellulose was changed by mixed microbes, increasing the exposed area of cellulose and hemicellulose, which was beneficial to improve the utilization efficiency of straw. The degradation rates of hemicellulose, cellulose and lignin were 44.4%, 34.9% and 39.2%, respectively, after the pretreatment process with mixed microbes. Pretreatment was more helpful to increase the methane content in the anaerobic fermentation process of corn straw pretreated with mixed microbes, and could also shorten the fermentation period.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.