Sustainable development in structural materials is currently getting attention all around the world. Solid waste, building and demolition waste, natural resources, and their reuse are the most obvious strategies for achieving sustainability in the construction industry. Solid waste human hair fiber (HHF) with a diameter of 70 µm and a length of 30–40 mm is used as a fiber, having a dosage of 0%, 1%, 1.5%, 2%, 3%, 4%, and 5%, while silica fume (SF) with a dosage of 0%, 5%, 10%, 15%, 20%, 25%, and 30% is used as a cement substitute. A drop of 50 mm to 75 mm slump was witnessed for the water–cement ratio used in the M20 mix design of concrete. The concrete’s mechanical properties, such as compressive, split tensile, and flexural strength, were determined after 28 days of water curing. The concept of the response surface methodology (RSM) for optimizing human hair fiber concrete (HHFC) and SF substitution was used, which was validated by the polynomial work expectation. The model is statistically significant when the fluctuation of the analysis of variance (ANOVA) is analyzed using a p-value with a significance level of 0.05. The test results showed that the use of 2% human hair as fiber and 15% SF as a cementitious additive or cement replacement considerably improved the strength of concrete. The compressive, flexural, and split tensile strengths of HHFC improved by 14%, 8%, and 7%, respectively, which shows the significance of human hair and the partial replacement of cement with SF. Moreover, SEM analysis was carried out to study the microstructure of the concrete matrix.
In high-rise buildings, shear walls are an important structures feature for sustaining lateral forces. The production of prefabricated steel frames buildings will effectively overcome iron and steel spare capacity, allowing the building sector to recover the industrial revolution. As an advanced kind of flexural rigidity steel plate shear walls (SPSWs) can withstand majority of the load in the frame structure, boost the preliminary lateral toughness and lateral bearing strength, and serve as a first protective barrier until the main frame is demolished, reducing the main frame's failure level and improving the structure's failure resistance. When structures are subjected to external loads such as earthquakes, wind, and other natural disasters, shear walls can be used to increase the structure's strength and safety. The main focus of this research is to use SAP2000 to compare and analyze two different types of shear walls in two different 7-story buildings. Two structural members, one having a honeycombed steel sheet sandwiched between two thin steel plates shear wall and the other having RCC shear wall are compared based on lateral loading parameters (base shear, displacement story-drift etc.). Using SAP2000, the effects of three main parameters were investigated by Pushover analysis and Time history analysis. From the complete analysis, shear wall with honey combed thin plates is proved to be better against seismic and wind loading as compared to RCC wall as well as honeycombed sheet sandwiched between steel plates is economical and gives more area to the story by occupying less space.
Executing the obligation of strengthened concrete is essential in investigating load exchanges from concrete to the inner reinforcing bar. The bond–displacement conduct and extreme pullout quality for pullout samples are essential information related to the durability of RC structures. The slip in the interface is basically due to a contrast in stresses between concrete and reinforcement. This distinction brings about the start of the split in encompassing concrete. This study examined the simple pullout solid 3D cylinder model strengthened by a reinforced steel bar, considered a line element for bond–slip conduct. The non-linear finite element model utilizing ANSYS software was established to concentrate on the concrete and steel reinforcement bond. Material nonlinearity because of cracking, crushing of concrete, and the steel reinforcing bar’s yielding were investigated. Test results showed that: a prediction model for early-age bond stress–slip relationship between steel bars and concrete was proposed based on modeling, which showed good agreement with test results. The precision of this model is explored by contrasting the finite element numerical analysis and that anticipated from test consequences of pullout examples. Immense homogeneity between the model and test results was found. This study could provide more accurate bond properties for structural analysis and design.
This paper describes the seismic performance of a steel frame with additional LYP steel dampers. LYP steel dampers provides passive energy dissipation device in a structure, it also reduces the lateral forces in efficient way which is produced by seismic wave. The seismic performance of structures is needed in the design of structure, especially in countries where seismic activities occur. This analysis is accomplished with the FEM and software called SAP2000. The steel frame is only analyzed using numerical simulation. This paper describes two steel frames, the first steel frame is a two story steel frame without LYP steel dampers while the second steel frame has with LYP steel dampers. The seismic mechanism analysis was accomplished with the help of nonlinear time history analysis technique and the results for inter-story drift, steel frames, base shear, the displacement of the top story and the stress of the dampers was obtained. The time history analysis was taken out with three different earthquake waves according to the Chinese code for the seismic design of buildings; the earthquake waves were divided into the three different earthquake levels in China which include the frequent, moderate and rare earthquake level. The seismic mechanism analysis was accomplished on the three different earthquakes and three different earthquake levels in China. The modal analysis was taken to obtain the frequency and the period of the steel frames. The steel frames were examined under the different load combination which is also described in the code for the seismic design of buildings to obtain the internal forces of the members of the steel frame which include the axial force, shear force and bending moment. The different load combinations are used to get the stress of the dampers. We notice that the addition of LYP steel dampers increases the seismic resistance of the steel frame as we can observe by a reduction in the displacement of the top story, base shear, and inter-story drift angle by the addition of LYP steel dampers on the steel frame. We can be able to observe the behavior of the frames under the different earthquake levels in China using the pushover analysis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.