Mitochondrial dysregulation has been implicated in oxidative stress-induced melanocyte destruction in vitiligo. However, the molecular mechanism underlying this process is merely investigated. Given the prominent role of nicotinamide adenine dinucleotide (NAD + )-dependent deacetylase Sirtuin3 (SIRT3) in sustaining mitochondrial dynamics and homeostasis and that SIRT3 expression and activity can be influenced by oxidative stress-related signaling, we wondered whether SIRT3 could play an important role in vitiligo melanocyte degeneration by regulating mitochondrial dynamics. Methods: We initially testified SIRT3 expression and activity in normal and vitiligo melanocytes via PCR, immunoblotting and immunofluorescence assays. Then, cell apoptosis, mitochondrial function and mitochondrial dynamics after SIRT3 intervention were analyzed by flow cytometry, immunoblotting, confocal laser microscopy, transmission electron microscopy and oxphos activity assays. Chromatin immunoprecipitation (ChIP), co-immunoprecipitation (Co-IP), immunoblotting and immunofluorescence assays were performed to clarify the upstream regulatory mechanism of SIRT3. Finally, the effect of honokiol on protecting melanocytes and the underlying mechanism were investigated via flow cytometry and immunoblotting analysis. Results: We first found that the expression and the activity of SIRT3 were significantly impaired in vitiligo melanocytes both in vitro and in vivo . Then, SIRT3 deficiency led to more melanocyte apoptosis by inducing severe mitochondrial dysfunction and cytochrome c release to cytoplasm, with Optic atrophy 1 (OPA1)-mediated mitochondrial dynamics remodeling involved in. Moreover, potentiated carbonylation and dampened peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC1α) activation accounted for SIRT3 dysregulation in vitiligo melanocytes. Finally, we proved that honokiol could prevent melanocyte apoptosis under oxidative stress by activating SIRT3-OPA1 axis. Conclusions: Overall, we demonstrate that SIRT3-dependent mitochondrial dynamics remodeling contributes to oxidative stress-induced melanocyte degeneration in vitiligo, and honokiol is promising in preventing oxidative stress-induced vitiligo melanocyte apoptosis.
Background: Keratinocytes can function as innate immune cells under oxidative stress and aggravate the cutaneous T-cell response that undermines melanocytes in the setting of vitiligo. The NOD-like receptor family pyrin domain containing 3 (NLRP3) inflammasome is a regulator of innate immunity that exists in keratinocytes. However, the role of the NLRP3 inflammasome in the pathogenesis of vitiligo has not been investigated. Objective: We sought to explicate the contribution of the activated NLRP3 inflammasome in keratinocytes to the autoimmune response in patients with vitiligo.Methods: Perilesional and serum samples from patients with vitiligo were collected to examine the status of the NLRP3 inflammasome in the setting of vitiligo. Cultured keratinocytes were treated with H 2 O 2 to investigate the mechanism for NLRP3 inflammasome activation under oxidative stress. Peripheral blood T cells were extracted from patients with vitiligo to explore the influence of the NLRP3 inflammasome on the T-cell response in patients with vitiligo. Results: Expressions of NLRP3 and downstream cytokine IL-1b were consistently increased in perilesional keratinocytes of patients with vitiligo. Notably, serum IL-1b levels were From a
Vitiligo is a cutaneous depigmentation disorder caused by the destruction of epidermal melanocytes. The generation and the skin infiltration of autoreactive CD8 þ cytotoxic T cells triggered by oxidative stress play a critical role in vitiligo. High-mobility group protein B1 (HMGB1) is a classic damage-associated molecular pattern molecule with strong proinflammatory effects in inflammatory reactions. A previous study reported an enhanced expression of HMGB1 in vitiligo lesions, but the role of HMGB1 in cutaneous inflammation of vitiligo is still unknown. In the present study, we initially found that HMGB1 was released from the nucleus of melanocytes in vitiligo perilesional skin. Furthermore, cultured normal human melanocytes could release HMGB1 under treatment with hydrogen peroxide. Moreover, HMGB1 facilitated the secretion of CXCL16 and IL-8 from keratinocytes by binding to the receptor for advanced glycation end products and activating NF-kB and extracellular signaleregulated kinase signaling pathways. Subsequently, HMGB1 led to the formation of chemotaxis for the migration of CD8 þ T cells from patients with vitiligo by increasing the release of CXCL16 from keratinocytes. Additionally, HMGB1 promoted the maturation of dendritic cells from patients with vitiligo. Altogether, our study demonstrates that HMGB1 released from melanocytes contributes to the formation of oxidative stresseinduced autoimmunity in vitiligo.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.