Lead‐free halide double perovskites (HDPs) are promising candidates for high‐performance solar cells because of their environmentally‐friendly property and chemical stability in air. The power conversion efficiency of HDPs‐based solar cells needs to be further improved before their commercialization in the market. It requires a thoughtful understanding of the correlation between their specific structure and property. Here, the structural and optical properties of an important HDP‐based (NH4)2SeBr6 are investigated under high pressure. A dramatic piezochromism is found with the increase in pressure. Optical absorption spectra reveal the pressure‐induced red‐shift in bandgap with two distinct anomalies at 6.57 and 11.18 GPa, and the energy tunability reaches 360 meV within 20.02 GPa. Combined with structural characterizations, Raman and infrared spectra, and theoretical calculations using density functional theory, results reveal that, the first anomaly is caused by the formation of a Br‐Br bond among the [SeBr6]2− octahedra, and the latter is attributed to a cubic‐to‐tetragonal phase transition. These results provide a clear correlation between the chemical bonding and optical properties of (NH4)2SeBr6. It is believed that the proposed strategy paves the way to optimize the optoelectronic properties of HDPs and further stimulate the development of next‐generation clear energy based on HDPs solar cells.
In recent years, organic-inorganic hybrid perovskite materials have been widely used in solar cells, photodetectors, and light-emitting diodes due to their advantages such as high light absorption coefficient, good carrier mobility, and long carrier diffusion length. However, the high toxicity of lead and poor stability still restrict the application and promotion of such materials. The lead-free double perovskite material derived from the concept of “heterovalent substitution”, while maintaining the high symmetrical structure of perovskite, avoids using the toxic lead elements, which has the advantages of environmental friendly, stable structure, and suitable band gap. At present, the limited research on lead-free double perovskite materials still leaves a big room to researchers, and such a limited research seriously restricts the development and promotion of such materials. Therefore, the relationship between the structure and performance of lead-free double perovskite materials needs further exploring in order to provide theoretical basis for the practical application of such materials. Here in this work, the lead-free double perovskite material Cs<sub>2</sub>TeCl<sub>6</sub> is prepared by the solution method. The crystal structure and optical properties of the lead-free double perovskite Cs<sub>2</sub>TeCl<sub>6</sub> under high pressure are investigated by using diamond anvil cell combined with <i>in-situ</i> high-pressure angle-dispersive X-ray diffraction and ultraviolet-visible absorption technology. The results show that the crystal structure of Cs<sub>2</sub>TeCl<sub>6</sub> is not changed within the experimental pressure range of 0-50.0 GPa, and the structural symmetry of <i>Fm-</i>3<i>m</i> is still maintained, indicating the sample has good stability. The lattice constant and volume of Cs<sub>2</sub>TeCl<sub>6</sub> gradually decrease within the pressure range of 0-50.0 GPa. The volume and pressure of Cs<sub>2</sub>TeCl<sub>6</sub> are fitted using the third-order Birch-Mumaghan equation of state, the bulk elastic modulus is obtained to be <i>B</i><sub>0</sub> = (18.77 ± 2.88) GPa. The smaller bulk elastic modulus indicates that the lead-free double perovskite material Cs<sub>2</sub>TeCl<sub>6</sub> has higher compressibility. The optical band gap of Cs<sub>2</sub>TeCl<sub>6</sub> is 2.68(3) eV at 1 atm and its optical band gap gradually decreases with the increase of pressure, which is related to the shrinkage of octahedral [TeCl<sub>6</sub>]<sup>2–</sup> under high pressure. The calculation results show that the Cs<sub>2</sub>TeCl<sub>6</sub> possesses an indirect band gap, the valence band maximum is mainly composed of Cl 3p orbits, and the conduction band minimum is mainly composed of Te 5p and Cl 3p orbits. After the pressure is completely relieved, Cs<sub>2</sub>TeCl<sub>6</sub> returns to the initial state. The above conclusions further deepen the understanding of the crystal structure and optical properties of lead-free double perovskite Cs<sub>2</sub>TeCl<sub>6</sub>, and provide a theoretical basis for designing and optimizing the lead-free double perovskite materials.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.