As we all know, there are a great number of optimization problems in the world. One of the relatively complicated and highlevel problems is the vehicle routing problem (VRP). Dynamic vehicle routing problem (DVRP) is a major variant of VRP, and it is closer to real logistic scene. In DVRP, the customers' demands appear with time, and the unserved customers' points must be updated and rearranged while carrying out the programming paths. Owing to the complexity and significance of the problem, DVRP applications have grabbed the attention of researchers in the past two decades. In this paper, we have two main contributions to solving DVRP. Firstly, DVRP is solved with enhanced Ant Colony Optimization (E-ACO), which is the traditional Ant Colony Optimization (ACO) fusing improved K-means and crossover operation. K-means can divide the region with the most reasonable distance, while ACO using crossover is applied to extend search space and avoid falling into local optimum prematurely. Secondly, several new evaluation benchmarks are proposed, which can objectively and comprehensively estimate the proposed method. In the experiment, the results for different scale problems are compared to those of previously published papers. Experimental results show that the algorithm is feasible and efficient.
In the real world, the vehicle routing problem (VRP) is dynamic and variable, so dynamic vehicle routing problem (DVRP) has obtained more and more attentions among researchers. Meanwhile, due to actual constraints of service hours and service distances, logistics companies usually build multiple depots to serve a great number of dispersed customers. Thus, the research of dynamic multidepot vehicle routing problem (DMDVRP) is significant and essential. However, it has not attracted much attention. In this paper, firstly, a clustering approach based on the nearest distance is proposed to allocate all customers to the depots. Then a hybrid ant colony optimization (HACO) with mutation operation and local interchange is introduced to optimize vehicle routes. In addition, in order to deal with dynamic problem of DMDVRP quickly, a real-time addition and optimization approach is designed to handle the new customer requests. Finally, the t-test is applied to evaluate the proposed algorithm; meanwhile the relations between degrees of dynamism (dod) and HACO are discussed minutely. Experimental results show that the HACO algorithm is feasible and efficient to solve DMDVRP.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.