The determination of the non-loading condition of the rail cable shifting (RCS) system, which consists of main cables, hangers and rail cables, is the premise of the girder erection for the long-span suspension bridges. An analytical form-finding analysis model of shifting system is established according to the basic assumptions of flexible cable structures. Herein, the rail cable is discretized into segmental linear cable elements and the main cable is discretized into segmental catenary elements. Moreover, the calculation and analysis equation of each member and their iterative solutions are derived by taking the elastic elongation of the sling into account. In addition, by taking the girder construction of Aizhai suspension bridge as engineering background, a global scale model of the RCS system is designed and manufactured; also the test system and working conditions are established. The comparison between the test results and analytical results shows the presented analytical method is correct and effective. The process is simplified in the analytical method, and the computational results and precision can satisfy the practical engineering requirements. In addition, the proposed method is suitable to apply to the computation analysis of similar structures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.