Materials with magneto-optic (MO) properties have enabled critical fiber-optic applications and highly sensitive magnetic field sensors. While traditional MO materials are inorganic in nature, new generations of MO materials based on organic semi-conducting polymers could allow increased versatility for device architectures, manufacturing options, and flexible mechanics. However, the origin of MO activity in semiconducting polymers is far from understood. In this paper, we report high MO activity observed in a chiral helical poly-3-(alkylsulfone)thiophene (P3AST), which confirms a new design for the creation of giant Faraday effect with Verdet constants up to (7.63±0.78)×104 deg T−1 m−1 at 532 nm. We have determined that the sign of the Verdet constant and its magnitude are related to the helicity of the polymer at the measured wavelength. The Faraday rotation and the helical conformation of P3AST are modulated by thermal annealing, which is further supported by DFT and MD simulations. Our results demonstrate that helical polymers exhibit enhanced Verdet constants, and expand the previous design space for polythiophene MO materials that was thought to be limited to highly regular lamellar structures. The structure property studies herein provide insights for the design of next generation MO materials based upon semiconducting organic polymers.
An asymmetric intramolecular Cannizzaro reaction of aryl and alkyl glyoxals with alcohols has been realized with an unprecedented high level of enantioselectivity, on the basis of a newly developed congested TOX ligand and a gradual liberation protocol of active glyoxals from glyoxal monohydrates. Preliminary results suggested a mechanism of enantioselective addition of alcohols to glyoxals contributing most to the stereoselectivity, other than by the dynamic kinetic resolution of hemiacetal intermediates.
Investigations of magnetism in electronically coupled polyradicals have largely focused on applications in photonic and magnetic devices, wherein radical polymers were found to possess molecularly tunable and cooperative magnetic properties. Radical polymers with nonconjugated insulating backbones have been intensively investigated previously; however the integration of radical species into conducting polymer backbones is at an early stage. We report herein 1,3-bisdiphenylene-2-phenylallyl (BDPA)-based conjugated radical polymers that display ambipolar redox activities and conductivities. Moreover, these radical polymers were demonstrated to be promising magneto-optic (MO) materials with Faraday rotations wherein the sign is modulated by the radical character and display absolute Verdet constants up to (2.80 ± 0.84) × 10 deg T m at 532 nm. These values rival the performance of the present-day commercial inorganic MO materials (e.g., terbium gallium garnet, V = -1.0 × 10 deg T m at 532 nm). The structure property studies detailed herein reveal the promise of multifunctional conjugated radical polymers as responsive MO materials.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.