In the heterogeneous field, modulation over strong metal-support interactions (SMSI) plays a crucial role in boosting catalytic performance toward interface-sensitive reactions (e.g., water gas shift reaction, WGSR). Herein, a CuZnTi ternary catalyst was prepared via in situ structural topological transformation from CuZnTi-layered double hydroxides precursor (CuZnTi-LDHs). The resulting catalyst Cu/ZnTi-MMO(H350) exhibits an extraordinarily high catalytic activity toward low temperature-WGSR with a reaction rate of 19.7 μmolCO gcat-1 s-1 at 250 °C, among the highest level in Cu-based catalysts. Advanced electron microscope and in situ spectroscopy characterizations verify that Cu nanoparticles (particle size: 7~10 nm) are modified by ZnTi-mixed metal oxides with abundant Cuδ+−Ov−Ti3+ (0<δ<1) interfacial sites. Incorporation of Ti element facilitates the reduction of ZnO to stabilize Cuδ+ species at the interface, which enhances the chemisorption of CO molecule. Simultaneously, neighboring Ov−Ti3+ species significantly promotes the dissociation of H2O molecule. The structure-activity correlation studies based on quasi-in situ XPS, in situ DRIFTS, in situ and operando EXAFS reveal that the interfacial sites (Cuδ+−Ov−Ti3+) serve as the intrinsic active sites of WGS reaction. A combination of in situ characterization techniques and DFT calculations further substantiate that associative mechanism is the predominant reactive path below 200 °C whilst redox mechanism is overwhelming above 250 °C in the presence of Cu/ZnTi-MMO catalyst. This work demonstrates a facile modulation on metal-support interfacial structure via LDHs approach, which paves a way for rational design and preparation of heterogeneous catalysts.
The design and exploitation of high-performance catalysts as well as understanding the structure-property correlation have gained considerable attention in selective hydrogenation reactions, but remain a huge challenge. Herein, we report a RuNi single atom alloy (SAA) in which Ru single atoms are anchored onto Ni nanoparticle surface via Ru–Ni coordination accompanied with electron transfer from sub-surface Ni to Ru. The optimal catalyst 0.4% RuNi SAA exhibits simultaneously improved activity (TOF value: 4293 h− 1) and chemoselectivity toward selective hydrogenation of 4-nitrostyrene to 4-aminostyrene (yield: >99%), which is, to the best of our knowledge, the highest level compared with reported heterogeneous catalysts. In situ experimental researches based on XAFS, FT-IR measurements and theoretical calculations reveal that the Ru–Ni interfacial sites as intrinsic active centers facilitate the preferential cleavage of N–O bond in nitro group with a decreased energy barrier by 0.35 eV. In addition, the Ru–Ni synergistic catalysis promotes the formation of intermediates (C8H7NO* and C8H7NOH*) and accelerates the rate-determining step (hydrogenation of C8H7NOH*), resulting in the extraordinary activity and chemoselectivity toward nitroarenes hydrogenation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.