We analyzed 186 binary pulsars (BPSRs) in the magnetic field versus spin period (B-P) diagram, where their relations to the millisecond pulsars (MSPs) can be clearly shown. Generally, both BPSRs and MSPs are believed to be recycled and spun-up in binary accreting phases, and evolved below the spin-up line setting by the Eddington accretion rate (Ṁ ≃10 18 g/s). It is noticed that most BPSRs are distributed around the spin-up line with mass accretion rateṀ = 10 16 g/s and almost all MSP samples lie above the spin-up line withṀ ∼ 10 15 g/s. Thus, we calculate that a minimum accretion rate (Ṁ ∼ 10 15 g/s) is required for the MSP formation, and physical reasons for this are proposed. In the B-P diagram, the positions of BPSRs and their relations to the binary parameters, such as the companion mass, orbital period and eccentricity, are illustrated and discussed. In addition, for the seven BPSRs located above the limit spin-up line, possible causes are suggested.
The evolutions of a neutron star’s rotation and magnetic field (B-field) have remained unsolved puzzles for over half a century. We ascribe the rotational braking torques of pulsar to both components, the standard magnetic dipole radiation (MDR) and particle wind flow (MDR + Wind, hereafter named MDRW), which we apply to the Crab pulsar (B0531 + 21), the only source with a known age and long-term continuous monitoring by radio telescope. Based on the above presumed simple spin-down torques, we obtain the exact analytic solution on the rotation evolution of the Crab pulsar, together with the related outcomes as described below: (1) unlike the constant characteristic B-field suggested by the MDR model, this value for the Crab pulsar increases by a hundred times in 50 kyr while its real B-field has no change; (2) the rotational braking index evolves from ∼3 to 1 in the long-term, however, it drops from 2.51 to 2.50 in ∼45 years at the present stage, while the particle flow contributes approximately 25% of the total rotational energy loss rate; (3) strikingly, the characteristic age has the maximum limit of ∼10 kyr, meaning that it is not always a good indicator of a real age. Furthermore, we discussed the evolutionary path of the Crab pulsar from the MDR to the wind domination by comparing with the possible wind braking candidate pulsar PSR J1734-3333.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.