Carob’s recognized nutritional and medicinal value next to its unique agriculture importance is associated with an array of social, economic, and cultural activities. The carob fruit is popular for its intense aroma due to the emitted volatile organic compounds (VOCs). The composition of VOCs released from carob fruits changes during ripening, rendering it a non-invasive tool for the determination of the ripening period and freshness of the fruit. Therefore, headspace solid-phase microextraction gas chromatography/mass spectrometry (HS-SPME-GC/MS) was applied to reveal the respective gaseous signal molecules related to fruit maturity. The sampling was implemented during weeks 26–36 from five different locations in Cyprus. Additionally, the gaseous emissions of total VOCs (TVOCs) and carbon dioxide (CO2) were recorded next to the moisture content of the fruit. The major chemical classes in the ripening are acids, followed by esters, and ketones. More specifically, the most abundant VOCs during ripening are propanoic acid, 2-methyl- (isobutyric acid), 2-heptanone, propanoic acid, 2-methyl-, 2-methylbutyl ester, acetic acid, methyl isobutyrate, propanoic acid, 2-methyl-, 3-methylbutyl ester, 2-pentanone, butanoic acid and propanoic acid, 2-methyl- ethyl ester. Finally, CO2 emissions and moisture content showed a rapid decline until the 31st week and then stabilized for all examined areas. The methodology revealed variations in VOCs’ profile during the ripening process.
A headspace high sorptive extraction (HS-HiSorb) Thermal Desorption-Gas Chromatography-Mass Spectrometry (TD-GC-MS) method was developed and optimized for the determination of the volatile profile of extra virgin olive oil (EVOO). The HS-HiSorb extraction parameters of temperature, sample mass, stirring rate, and adsorption time were optimized by applying the one-factor-at-a-time (OFAT) approach. A total of 21 multi-varietal olive oil samples were collected from four different olive mills in Cyprus during the harvesting period 2020–2021. Seventy-six volatile organic compounds (VOCs) were identified and semi-quantified, belonging to several chemical categories such as hydrocarbons (31) three of which are terpenes, aldehydes (22), carboxylic acids (6), ketones (5), esters (4), alcohols (3), ethers (2), furans (2), and others (1). Aldehydes (40.20 %) and hydrocarbons (41.08 %) represented the main components of olive oil’s volatile profile. The overall concentrations of VOCs in the samples ranged from 8.73 to 39.81 mg/kg. The HiSorb-TD-GC-MS method was evaluated in terms of repeatability and linearity for selected VOCs. Repeatability was performed at three different concentrations (1, 10, and 100 ppbv), and the relative standard deviation (RSD) ranged from 2.21 to 15.86 %. The calibration curves of (E)-2-hexenal, 1-penten-3-one, nonanal, and hexanal were developed to evaluate the linearity range. The results were satisfactory, with the correlation coefficient (R 2) greater than 0.98. Finally, the limitations of the method are mentioned and discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.