We present TrojDRL, a tool for exploring and evaluating backdoor attacks on deep reinforcement learning agents. TrojDRL exploits the sequential nature of deep reinforcement learning (DRL) and considers different gradations of threat models. We show that untargeted attacks on state-of-the-art actor-critic algorithms can circumvent existing defenses built on the assumption of backdoors being targeted. We evaluated TrojDRL on a broad set of DRL benchmarks and showed that the attacks require only poisoning as little as 0.025% of training data. Compared with existing works of backdoor attacks on classification models, TrojDRL provides a first step towards understanding the vulnerability of DRL agents.
This paper proposes a new approach to detecting neural Trojans on Deep Neural Networks during inference. This approach is based on monitoring the inference of a machine learning model, computing the attribution of the model's decision on different features of the input, and then statistically analyzing these attributions to detect whether an input sample contains the Trojan trigger. The anomalous attributions, aka misattributions, are then accompanied by reverse-engineering of the trigger to evaluate whether the input sample is truly poisoned with a Trojan trigger. We evaluate our approach on several benchmarks, including models trained on MNIST, Fashion MNIST, and German Traffic Sign Recognition Benchmark, and demonstrate the state of the art detection accuracy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.