Microbial fuel cells (MFCs) have undergone great technological development in the last 20 years, but very little has been done to commercialize them. The simultaneous power production and wastewater treatment are features those greatly increase the interest in the use of MFCs. This kind of distributed power generation is renewable and friendly and can be easily integrated into a smart grid. However, there are some key issues with their commercialization: high construction costs, difficulty in developing high power structures, MFC lifespan, and maintaining a high level of efficiency. The objective of this article is to explore the possibilities of using MFCs in urban wastewater not only regarding the technical criteria of their application, but also mainly from an economic point of view, to determine the conditions through which the viability of the investment is ensured and the possibilities of their integration in a smart grid are identified. Initially, this article explores the implementation/configuration of a power plant with MFCs within an urban wastewater treatment plant on a theoretical basis. In addition, based on the corresponding physical quantities for urban wastewater treatment, the construction and operational costs are determined and the viability of the investment is examined based on classic economic criteria such as net present value, benefit–cost ratio, internal rate of return, and discounted payback period. Furthermore, sensitivity analysis is carried out, concerning both technical parameters, such as the percentage of organic matter removal, power density, sewage residence time, MFC efficiency, etc., and economical parameters, such as the reduction of construction costs due to change of materials, change of interest rate, and lifetime. The advantages and disadvantages of their use in smart grids is also analyzed. The results show that the use of MFCs for power generation cannot be utopian as long as they are integrated into the structure of a central wastewater treatment plant on the condition that the scale-up technical issues of MFCs are successfully addressed.
A lot of autonomous power systems have been designed and operated with different power levels and with special requirements for climatic conditions, availability, operation/maintenance cost, fuel consumption, environmental impacts, etc. In this paper a novel design of an autonomous power system with photovoltaic panels and electrochemical batteries for a shoreline electrode station is analyzed. This station will be constructed on the small island of Stachtoroi for the new high voltage direct current (HVDC) link of Attica–Crete in Greece. The general guidelines of the International Council on Large Electric Systems (CIGRE) and of the International Electrotechnical Committee (IEC) for the power system of lighting and auxiliary loads for these HVDC stations are supplied from the medium voltage or the low voltage distribution network, whereas they do not take into account the criticality of this interconnection, which will practically be the unique power facility of Crete island. The significance of Crete power system interconnection demands an increased reliability level for the power sources, similar to military installations and hospital surgeries. In this research a basic electrical installation design methodology is presented. First, the autonomous photovoltaic power system with the energy storage system (ESS) consisting of electrochemical batteries is preliminary designed according to the relative bibliography. The station power and energy consumption are analytically determined taking into consideration the daily temperature variation annually. Afterwards, a techno-economic optimization process based on a sensitivity analysis is formed modifying the size/power of photovoltaic panels (PVs), the type and the energy capacity of the batteries taking into consideration the operation cycle of PVs—batteries charge and discharge and the battery ageing based on the relationship between battery cycles—the depth of discharge, the daily solar variation per month, the installation cost of PVs and batteries, the respective maintenance cost, etc., while the reliability criteria of expected loss of load power and of load energy are satisfied. Using the proposed methodology the respective results are significantly improved in comparison with the preliminary autonomous power system design or the connection with the distribution power system.
In Greece, a new bi-polar high voltage direct current (HVDC) transmission system with a ground return was designed with nominal characteristics of ±500 kV, 1 GW, between Attica in the continental country and the island of Crete, which is an autonomous power system based on thermal diesel units. The interconnection line has a total length of about 380 km. The undersea section is 330 km long. In this paper, the use of the Aegean Sea as an active part of the ground return, based on shoreline pond electrodes, was proposed to avoid EUR 200 Μ of expenses. According to the general guidelines for HVDC electrode design by the International Council on Large Electric Systems (CIGRE) working group B4.61/2017, the electric field and ground potential rise of shoreline electrodes should be studied to analyze safety, electrical interference and corrosion impacts related to the operation of the electrodes. Two kinds of studies are available; one is a simplified approach based on a spherical/pointed electrode centered at the edge of the seashore and seabed, assuming it to be sloping to the horizontal, and the other is a detailed simulated model using a suitable electric field software package. The first approach usually gives more unfavorable results than the second one, especially in the near electric field, while it can not take into account obstacles, i.e., dams, near to electrode position. The second approach demands a detailed description of the wider installation area, which cannot be available during the preliminary study, significant computational time and considerable financial resources for the purchase of a reliable specialized software package. In this research, a two-step modification of the CIGRE simplified model was proposed. The first modification deals with the obstacles in the near electric field, and the second modification deals with the use of a linear current source (instead of a point one), which can give more accurate results. Additionally, the electric field for complex electrode formation is calculated by applying the superposition method, which can be easily achieved using a common software package, i.e., MATLAB. The proposed simplified approaches were applied on shoreline pond electrode locations for the Attica–Crete HVDC interconnection line (between Stachtoroi island in Attica and Korakia beach in Crete), allowing the preliminary study to be conducted swiftly, giving satisfactory results about electric field gradient, ground potential rise and resistance to remote earth of electrodes stations for the near and far electric field.
The penetration of renewable energy sources and the development of autonomous power systems for the supply of isolated consumers find applications such as covering energy needs in lighthouses, small islands, monasteries, and even isolated special industrial facilities. Power plant cost is a major limitation in the development of these systems. For example, although the electromechanical cost of photovoltaic plants has been significantly reduced in recent years, however the land cost is not considered, which is a significant expenditure. In this paper, the real problem of an autonomous power station design for the supply of the shoreline electrode substation on the Stachtorroi islet of Attica, is taken as the starting point. The electrode substation is part of the Attica-Crete high voltage direct current (HVDC) electrical interconnection project. For the above problem, an overall evaluation algorithm for a photovoltaic (PV) plant is proposed that considers the technical characteristics of the plant, the installation and operating costs (including land costs in addition to electromechanical costs and efficiency of each of the plants components), as well as the actual commercial data of the individual key elements (PV panels, inverters) of various companies, choosing the optimal system through exhaustive search depending on the required power and the deflated capital reduction interest rate
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.