Learning curves in construction operations analysis is deemed as one of the main factors that determine the variation of on-site productivity and is always taken into account during the planning and estimation stage. This research attempts the assessment of learning curve models’ suitability for the effective analysis of the learning phenomenon for construction operations that are fairly complicated concerning a floating caisson fabrication process for a large-scale marine project, using productivity data. This paper investigates the role of published learning curve models (i.e. Straightline or Wright; Stanford “B”; Cubic; Piecewise or Stepwise; Exponential) by comparing their outcomes through the use of both unit and cumulative productivity data. There are two main research objectives: first, the model best fitting historical productivity data of construction activities that have been completed are investigated, while secondly, an attempt is made to determine which model better predicts future performance. The less actual construction data deviate from each model’s yielded results, the better their suitability. In the case of unit data, the cubic model fits better historical data, while in the case of future predictions, the Stanford “B” model provides better results. Respectively, the Cubic model yields better results when using cumulative data on historical data and the Straight-line model predicts in a more reliable fashion future performance Possible extensions could be developed in the area of future performance predictions, by adopting different data representation techniques (e.g. moving/exponential weighted average) or by including other (non-classic) learning curve models (e.g. DeJong, Knecht, hyperbolic models).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.