Alzheimer's disease (AD) and mild cognitive impairment (MCI), the transitional clinical stage between cognition in normal aging and dementia, have been linked to abnormalities in brain perfusion. Pulsed arterial spin labeling (PASL) is a magnetic resonance imaging (MRI) technique for evaluating brain perfusion. The present study aimed to determine regional perfusion abnormalities in 19 patients with mild dementia in AD and 24 patients with MCI as compared to 24 cognitively healthy elderly controls using PASL. In line with nuclear imaging methods, lower perfusion in patients with MCI and AD was found mainly in the parietal lobe, but also in angular and middle temporal areas as well as in the left middle occipital lobe and precuneus. Our data imply that PASL may be a valuable instrument for investigating perfusion changes in the transition from normal aging to dementia and indicate that it might become an alternative to nuclear imaging techniques in AD diagnostics.
Objective: To examine the outcome among patients diagnosed with different types of mild cognitive impairment (MCI). Patients: A follow-up examination (average follow-up period: 3.49 ± 2.2 years) was performed in 81 cognitively impaired, non-demented patients aged >55 years at baseline. Results: 8 of 32 patients with amnestic MCI (25%), 22 of 41 patients with multiple-domain MCI (54%), and 3 of 8 patients with single non-memory MCI (37.5%) progressed to dementia. The clinical type of MCI is significantly associated with the likelihood of conversion to dementia. Discussion: When the clinical syndrome of MCI evolves on a neurodegenerative basis, the multiple-domain type of MCI has a less favorable prognosis than the amnestic type and may represent a more advanced prodromal stage of dementia.
Background-Pittsburgh Compound B ([ 11 C] PiB) is a specific positron emission tomography (PET) marker of cerebral amyloid deposits. Only few data have been published on in vivo longitudinal changes of amyloid load in Alzheimer's disease (AD) patients, with conflicting results. Therefore, little is known about the factors that influence these changes.
Premature termination codon (PTC) mutations in the ATP-Binding Cassette, Sub-Family A, Member 7 gene (ABCA7) have recently been identified as intermediate-to-high penetrant risk factor for late-onset Alzheimer’s disease (LOAD). High variability, however, is observed in downstream ABCA7 mRNA and protein expression, disease penetrance, and onset age, indicative of unknown modifying factors. Here, we investigated the prevalence and disease penetrance of ABCA7 PTC mutations in a large early onset AD (EOAD)—control cohort, and examined the effect on transcript level with comprehensive third-generation long-read sequencing. We characterized the ABCA7 coding sequence with next-generation sequencing in 928 EOAD patients and 980 matched control individuals. With MetaSKAT rare variant association analysis, we observed a fivefold enrichment (p = 0.0004) of PTC mutations in EOAD patients (3%) versus controls (0.6%). Ten novel PTC mutations were only observed in patients, and PTC mutation carriers in general had an increased familial AD load. In addition, we observed nominal risk reducing trends for three common coding variants. Seven PTC mutations were further analyzed using targeted long-read cDNA sequencing on an Oxford Nanopore MinION platform. PTC-containing transcripts for each investigated PTC mutation were observed at varying proportion (5–41% of the total read count), implying incomplete nonsense-mediated mRNA decay (NMD). Furthermore, we distinguished and phased several previously unknown alternative splicing events (up to 30% of transcripts). In conjunction with PTC mutations, several of these novel ABCA7 isoforms have the potential to rescue deleterious PTC effects. In conclusion, ABCA7 PTC mutations play a substantial role in EOAD, warranting genetic screening of ABCA7 in genetically unexplained patients. Long-read cDNA sequencing revealed both varying degrees of NMD and transcript-modifying events, which may influence ABCA7 dosage, disease severity, and may create opportunities for therapeutic interventions in AD.Electronic supplementary materialThe online version of this article (doi:10.1007/s00401-017-1714-x) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.