The 17β-estradiol (E2)/estrogen receptor alpha (ERα) signaling pathway is one of the most important pathways in hormone-dependent breast cancer. E2 plays pivotal roles in cancer cell growth, survival, and architecture as well as in gene expression regulatory mechanisms. In this study, we established stably transfected MCF-7 cells by knocking down the ERα gene (designated as MCF-7/SP10+ cells), using specific shRNA lentiviral particles, and compared them with the control cells (MCF-7/c). Interestingly, ERα silencing in MCF-7 cells strongly induced cellular phenotypic changes accompanied by significant changes in gene and protein expression of several markers typical of epithelial to mesenchymal transition (EMT). Notably, these cells exhibited enhanced cell proliferation, migration and invasion. Moreover, ERα suppression strongly affected the gene and protein expression of EGFR and HER2 receptor tyrosine kinases, and various extracellular matrix (ECM) effectors, including matrix metalloproteinases and their endogenous inhibitors (MMPs/TIMPs) and components of the plasminogen activation system. The action caused by E2 in MCF-7/c cells in the expression of HER2, MT1-MMP, MMP1, MMP9, uPA, tPA, and PAI-1 was abolished in MCF-7/SP10+ cells lacking ERα. These data suggested a regulatory role for the E2/ERα pathway in respect to the composition and activity of the extracellular proteolytic molecular network. Notably, loss of ERα promoted breast cancer cell migration and invasion by inducing changes in the expression levels of certain matrix macromolecules (especially uPA, tPA, PAI-1) through the EGFR-ERK signaling pathway. In conclusion, loss of ERα in breast cancer cells results in a potent EMT characterized by striking changes in the expression profile of specific matrix macromolecules highlighting the potential nodal role of matrix effectors in breast cancer endocrine resistance.
Proteoglycans are major constituents of the extracellular matrices as well as the cell surfaces and basement membranes. They play key roles in supporting the dynamic extracellular matrix by generating complex structural networks with other macromolecules and by regulating cellular phenotypes and signaling. It is becoming evident, however, that proteolytic enzymes are required partners for matrix remodeling and for modulating cell signaling via matrix constituents. Proteinases contribute to all stages of diseases, particularly in cancer development and progression, and contextually participate in either the removal of damaged products or in the processing of matrix molecules and signaling receptors. Indeed, the dynamic interplay between proteoglycans and proteolytic enzymes is a crucial biological step that contributes to the pathophysiology of cancer and inflammation. Moreover, proteoglycans are implicated in the expression and secretion of proteolytic enzymes and often modulate their activities. In this review we present emerging biological roles of proteoglycans and proteinases with special emphasis on their complex interplay. We critically evaluate this important proteoglycan-proteinase interactome and discuss future challenges of potentially targeting this axis in the treatment of cancer.
If you can submit your illustrations in an electronic form, please submit the original graphic files. Do not insert figures into your Word document. Humana Press prefers that files be submitted in TIFF or EPS format, with at least 300 dpi resolution. PDF, JPG, Excel, and PowerPoint files may also be acceptable. Please check with your editor if you have questions regarding specific figures. Humana Press prefers that art be submitted as electronic files rather than as hard copies; however, scanned images may not be of sufficient quality for reproduction, and authors/editors should expect to submit hard copies of scanned art along with their manuscript. Please scan art at 600 dpi. Remember when considering figures that they will probably be reduced to fit onto a book page, so pay particular attention to making labels highly legible and not too small. You may want to photocopy your figures to the expected final size as a test to determine legibility. The usable page size of the book will usually be about 4.5 x 7.5 inches. Most figures (including their caption) will occupy half a page. Labels should be in a sans-serif font, preferably Helvetica. When at final reduction the size should be no smaller than 8 point. Please ensure that your figures are clearly labeled. Number tables separately.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.