| Racetrack memory (RTM) is a novel spintronic memory-storage technology that has the potential to overcome fundamental constraints of existing memory and storage devices. It is unique in that its core differentiating feature is the movement of data, which is composed of magnetic domain walls (DWs), by short current pulses. This enables more data to be stored per unit area compared to any other current technologies. On the one hand, RTM has the potential for mass data storage with unlimited endurance using considerably less energy than today's technologies. On the other hand, RTM promises an ultrafast nonvolatile memory competitive with static random access memory (SRAM) but with a much smaller footprint. During the last decade, the discovery of novel physical mechanisms to operate RTM has led to a major enhancement in the efficiency with which nanoscopic, chiral DWs can be manipulated. New materials and artificially atomically engineered thin-film structures have been found to increase the speed and lower the threshold current with which the data bits can be manipulated. With these recent Manuscript
Heusler alloys are a large family of compounds with complex and tunable magnetic properties, intimately connected to the atomic scale ordering of their constituent elements. We show that using a chemical templating technique of atomically ordered X′Z′ (X′ = Co; Z′ = Al, Ga, Ge, Sn) underlayers, we can achieve near bulk-like magnetic properties in tetragonally distorted Heusler films, even at room temperature. Excellent perpendicular magnetic anisotropy is found in ferrimagnetic X3Z (X = Mn; Z = Ge, Sn, Sb) films, just 1 or 2 unit-cells thick. Racetracks formed from these films sustain current-induced domain wall motion with velocities of more than 120 m s−1, at current densities up to six times lower than conventional ferromagnetic materials. We find evidence for a significant bulk chiral Dzyaloshinskii–Moriya exchange interaction, whose field strength can be systematically tuned by an order of magnitude. Our work is an important step towards practical applications of Heusler compounds for spintronic technologies.
Antiferromagnet spintronic devices eliminate or mitigate long-range dipolar fields, thereby promising ultrafast operation. For spin transport electronics, one of the most successful strategies is the creation of metallic synthetic antiferromagnets, which, to date, have largely been formed from transition metals and their alloys. Here, we show that synthetic antiferrimagnetic sandwiches can be formed using exchange coupling spacer layers composed of atomically ordered RuAl layers and ultrathin, perpendicularly magnetized, tetragonal ferrimagnetic Heusler layers. Chemically ordered RuAl layers can both be grown on top of a Heusler layer and allow for the growth of ordered Heusler layers deposited on top of it that are as thin as one unit cell. The RuAl spacer layer gives rise to a thickness-dependent oscillatory interlayer coupling with an oscillation period of ~1.1 nm. The observation of ultrathin ordered synthetic antiferrimagnets substantially expands the family of synthetic antiferromagnets and magnetic compounds for spintronic technologies.
Spin–orbit torque that originates from spin Hall effect and Dzyaloshinskii–Moriya interaction (DMI) can efficiently move chiral magnetic domain walls in perpendicularly magnetized wires. It has been shown that antiferromagnetically coupled composite domain walls across a ruthenium layer can be driven even faster by exchange coupling torque that is proportional to exchange coupling strength. Here, we report a current-driven motion of composite chiral domain walls in synthetic antiferromagnets with a rhodium spacer layer. It is found that the domain walls in the wire with a rhodium layer do not move as fast as that with a ruthenium layer although the exchange coupling in Co|Rh|Co is stronger than Co|Ru|Co, which is due to the formation of a large DMI at the Rh|Co interface. The Dzyaloshinskii–Moriya interaction at the Co/Rh interface has the same sign and comparable strength to the Pt|Co interface, thus negating the exchange coupling torque. The spin Hall effect from rhodium is found to be as small as ruthenium. Our findings show that rhodium can be used to tailor the DMI strengths in the current-driven motion of chiral domain walls in various magnetic nanostructures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.