This paper explores methodologies for developing intelligent automated decision systems for complex processes that contain uncertainties, thus requiring computational intelligence. Irrigation decision support systems (IDSS) promise to increase water efficiency while sustaining crop yields. Here, we explored methodologies for developing intelligent IDSS that exploit statistical, measured, and simulated data. A simple and a fuzzy multicriteria approach as well as a Decision Tree based system were analyzed. The methodologies were applied in a sample of olive tree farms of Heraklion in the island of Crete, Greece, where water resources are scarce and crop management is generally empirical. The objective is to support decision for optimal financial profit through high yield while conserving water resources through optimal irrigation schemes under various (or uncertain) intrinsic and extrinsic conditions. Crop irrigation requirements are modelled using the FAO-56 equation. The results demonstrate that the decision support based on probabilistic and fuzzy approaches point to strategies with low amounts and careful distributed water irrigation strategies. The decision tree shows that decision can be optimized by examining coexisting factors. We conclude that irrigation-based decisions can be highly assisted by methods such as decision trees given the right choice of attributes while keeping focus on the financial balance between cost and revenue.
Agricultural systems are constantly stressed due to higher demands for products. Consequently, water resources consumed on irrigation are increased. In combination with the climatic change, those are major obstacles to maintaining sustainable development, especially in a semi-arid land. This paper presents an end-to-end Machine Learning framework for predicting the potential profit from olive farms. The objective is to estimate the optimal economic gain while preserving water resources on irrigation by considering various related factors such as climatic conditions, crop management practices, soil characteristics, and crop yield. The case study focuses on olive tree farms located on the Hellenic Island of Crete. Real data from the farms and the weather in the area will be used. The target is to build a framework that will preprocess input data, compare the results among a group of Machine Learning algorithms and propose the best-predicted value of economic profit. Various aspects during this process will be thoroughly examined such as the bias-variance tradeoff and the problem of overfitting, data transforms, feature engineering and selection, ensemble methods as well as pursuing optimal resampling towards better model accuracy. Results indicated that through data preprocessing and resampling, Machine Learning algorithms performance is enhanced. Ultimately, prediction accuracy and reliability are greatly improved compared to algorithms’ performances without the framework’s operation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.