In this paper, we propose a method for matching biometric data from disparate domains. Specifically, we focus on the problem of comparing a low-resolution (LR) image with a high-resolution (HR) one. Existing coupled mapping methods do not fully exploit the HR information or they do not simultaneously use samples from both domains during training. To this end, we propose a method that learns coupled distance metrics in two steps. In addition, we propose to jointly learn two semi-coupled bases that yield optimal representations. In particular, the HR images are used to learn a basis and a distance metric that result in increased class-separation. The LR images are then used to learn a basis and a distance metric that map the LR data to their class-discriminated HR pairs. Finally, the two distance metrics are refined to simultaneously enhance the class-separation of both HR class-discriminated and LR projected images. We illustrate that different distance metric learning approaches can be employed in conjunction with our framework. Experimental results on Multi-PIE and SCface, along with the relevant hypothesis tests, provide evidence of the effectiveness of the proposed approach. Figure 4. Depiction of the ROC curves for the Multi-PIE database for Experiment 2 (color figure, best viewed in electronic format).
In this paper, we first offer an overview of advances in the field of distance metric learning. Then, we empirically compare selected methods using a common experimental protocol. The number of distance metric learning algorithms proposed keeps growing due to their effectiveness and wide application. However, existing surveys are either outdated or they focus only on a few methods. As a result, there is an increasing need to summarize the obtained knowledge in a concise, yet informative manner. Moreover, existing surveys do not conduct comprehensive experimental comparisons. On the other hand, individual distance metric learning papers compare the performance of the proposed approach with only a few related methods and under different settings. This highlights the need for an experimental evaluation using a common and challenging protocol. To this end, we conduct face verification experiments, as this task poses significant challenges due to varying conditions during data acquisition. In addition, face verification is a natural application for distance metric learning because the encountered challenge is to define a distance function that: 1) accurately expresses the notion of similarity for verification; 2) is robust to noisy data; 3) generalizes well to unseen subjects; and 4) scales well with the dimensionality and number of training samples. In particular, we utilize well-tested features to assess the performance of selected methods following the experimental protocol of the state-of-the-art database labeled faces in the wild. A summary of the results is presented along with a discussion of the insights obtained and lessons learned by employing the corresponding algorithms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.