Classification-via-clustering (CvC) is a widely used method, using a clustering procedure to perform classification tasks. In this paper, a novel K-Means-based CvC algorithm is presented, analysed and evaluated. Two additional techniques are employed to reduce the effects of the limitations of K-Means. A hypercube of constraints is defined for each centroid and weights are acquired for each attribute of each class, for the use of a weighted Euclidean distance as a similarity criterion in the clustering procedure. Experiments are made with 42 well–known classification datasets. The experimental results demonstrate that the proposed algorithm outperforms CvC with simple K-Means.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.