Hydrogen sulfide (H 2 S) is a unique gasotransmitter, with regulatory roles in the cardiovascular, nervous, and immune systems. Some of the vascular actions of H 2 S (stimulation of angiogenesis, relaxation of vascular smooth muscle) resemble those of nitric oxide (NO). Although it was generally assumed that H 2 S and NO exert their effects via separate pathways, the results of the current study show that H 2 S and NO are mutually required to elicit angiogenesis and vasodilatation. Exposure of endothelial cells to H 2 S increases intracellular cyclic guanosine 5′-monophosphate (cGMP) in a NO-dependent manner, and activated protein kinase G (PKG) and its downstream effector, the vasodilator-stimulated phosphoprotein (VASP). Inhibition of endothelial isoform of NO synthase (eNOS) or PKG-I abolishes the H 2 S-stimulated angiogenic response, and attenuated H 2 S-stimulated vasorelaxation, demonstrating the requirement of NO in vascular H 2 S signaling. Conversely, silencing of the H 2 S-producing enzyme cystathionine-γ-lyase abolishes NO-stimulated cGMP accumulation and angiogenesis and attenuates the acetylcholine-induced vasorelaxation, indicating a partial requirement of H 2 S in the vascular activity of NO. The actions of H 2 S and NO converge at cGMP; though H 2 S does not directly activate soluble guanylyl cyclase, it maintains a tonic inhibitory effect on PDE5, thereby delaying the degradation of cGMP. H 2 S also activates PI3K/Akt, and increases eNOS phosphorylation at its activating site S1177. The cooperative action of the two gasotransmitters on increasing and maintaining intracellular cGMP is essential for PKG activation and angiogenesis and vasorelaxation. H 2 S-induced wound healing and microvessel growth in matrigel plugs is suppressed by pharmacological inhibition or genetic ablation of eNOS. Thus, NO and H 2 S are mutually required for the physiological control of vascular function. N itric oxide (NO) and hydrogen sulfide (H 2 S) are two endogenous gasotransmitters whose regulatory roles in the cardiovascular system include vasorelaxation and stimulation of angiogenesis (1, 2). In endothelial cells, NO is synthesized by the endothelial isoform of NO synthase (eNOS). The principal pathway of NO signaling involves binding to the heme moiety of the soluble guanylyl cyclase (sGC) and production of the second messenger cyclic guanosine 5′-monophosphate (cGMP), followed by the activation of protein kinase G (PKG) (3, 4). However, vascular H 2 S is generated from L-cysteine by two pyridoxal 5′-phosphate-dependent enzymes, cystathionine-β-synthase (CBS) and cystathionine-γ-lyase (CSE), and by the combined action of cysteine aminotransferase (CAT) and 3-mercaptopyruvate sulfurtransferase (3-MST); activation of the ATP-dependent potassium channel (K ATP channel), modulation of cell metabolism, and posttranslational protein modifications via sulfhydration have been identified as some of its key signaling pathways (5-7).It is generally assumed that the signaling pathways of NO and H 2 S are independent. In the ...
Background and Purpose Hydrogen sulfide (H2S) is a signalling molecule that belongs to the gasotransmitter family. Two major sources for endogenous enzymatic production of H2S are cystathionine β synthase (CBS) and cystathionine γ lyase (CSE). In the present study, we examined the selectivity of commonly used pharmacological inhibitors of H2S biosynthesis towards CSE and CBS.Experimental Approach To address this question, human CSE or CBS enzymes were expressed and purified from Escherichia coli as fusion proteins with GSH-S-transferase. After purification, the activity of the recombinant enzymes was tested using the methylene blue method.Key Results β-cyanoalanine (BCA) was more potent in inhibiting CSE than propargylglycine (PAG) (IC50 14 ± 0.2 μM vs. 40 ± 8 μM respectively). Similar to PAG, L-aminoethoxyvinylglycine (AVG) only inhibited CSE, but did so at much lower concentrations. On the other hand, aminooxyacetic acid (AOAA), a frequently used CBS inhibitor, was more potent in inhibiting CSE compared with BCA and PAG (IC50 1.1 ± 0.1 μM); the IC50 for AOAA for inhibiting CBS was 8.5 ± 0.7 μM. In line with our biochemical observations, relaxation to L-cysteine was blocked by AOAA in aortic rings that lacked CBS expression. Trifluoroalanine and hydroxylamine, two compounds that have also been used to block H2S biosynthesis, blocked the activity of CBS and CSE. Trifluoroalanine had a fourfold lower IC50 for CBS versus CSE, while hydroxylamine was 60-fold more selective against CSE.Conclusions and Implications In conclusion, although PAG, AVG and BCA exhibit selectivity in inhibiting CSE versus CBS, no selective pharmacological CBS inhibitor is currently available.
SummaryThe ribosome is a macromolecular machine responsible for protein synthesis in all organisms. Despite the enormous progress in studies on the structure and function of prokaryotic ribosomes, the respective molecular details of the mechanism by which the eukaryotic ribosome and associated factors construct a polypeptide accurately and rapidly still remain largely unexplored. Eukaryotic ribosomes possess more RNA and a higher number of proteins than eubacterial ribosomes. As the tertiary structure and basic function of the ribosomes are conserved, what is the contribution of these additional elements? Elucidation of the role of these components should provide clues to the mechanisms of translation in eukaryotes and help unravel the molecular mechanisms underlying the differences between eukaryotic and eubacterial ribosomes. This article focuses on a class of eukaryotic ribosomal proteins that do not have a eubacterial homologue. These proteins play substantial roles in ribosomal structure and function, and in mRNA binding and nascent peptide folding. The role of these proteins in human diseases and viral expression, as well as their potential use as targets for antiviral agents is discussed.
The major function of the ribosome is its ability to catalyze formation of peptide bonds, and it is carried out by the ribosomal peptidyltransferase. Recent evidence suggests that the catalyst of peptide bond formation is the 23S rRNA of the large ribosomal subunit. We have developed an in vitro system for the determination of peptidyltransferase activity in yeast ribosomes. Using this system, a kinetic analysis of a model reaction for peptidyltransferase is described with Ac-Phe-tRNA as the peptidyl donor and puromycin as the acceptor. The Ac-Phe-tRNA-poly(U)-80S ribosome complex (complex C) was isolated and then reacted with excess puromycin to give Ac-Phe-puromycin. This reaction (puromycin reaction) followed first-order kinetics. At saturating concentrations of puromycin, the first-order rate constant (k(3)) is identical to the catalytic rate constant (k(cat)) of peptidyltransferase. This k(cat) from wild-type yeast strains was equal to 2.18 min(-1) at 30 degrees C. We now present for the first time kinetic evidence that yeast ribosomes lacking a particular protein of the 60S subunit may possess significantly altered peptide bond-forming ability. The k(cat) of peptidyltransferase from mutants lacking ribosomal protein L24 was decreased 3-fold to 0.69 min(-1), whereas the k(cat) from mutants lacking L39 was slightly increased to 3.05 min(-1) and that from mutants lacking both proteins was 1.07 min(-1). These results suggest that the presence of ribosomal proteins L24 and, to a lesser extent, L39 is required for exhibition of the normal catalytic activity of the ribosome. Finally, the L24 or L39 mutants did not affect the rate or the extent of the translocation phase of protein synthesis. However, the absence of L24 caused increased resistance to cycloheximide, a translocation inhibitor. Translocation of Ac-Phe-tRNA from the A- to P-site was inhibited by 50% at 1.4 microM cycloheximide for the L24 mutant compared to 0.7 microM for the wild type.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.