Bioprocesses have received a lot of attention to produce clean and sustainable alternatives to fossilbased materials. However, they are generally difficult to optimize due to their unsteady-state operation modes and stochastic behaviours. Furthermore, biological systems are highly complex, therefore plantmodel mismatch is often present. To address the aforementioned challenges we propose a Reinforcement learning based optimization strategy for batch processes.In this work we applied the Policy Gradient method from batch-to-batch to update a control policy parametrized by a recurrent neural network. We assume that a preliminary process model is available, which is exploited to obtain a preliminary optimal control policy. Subsequently, this policy is updated based on measurements from the true plant. The capabilities of our proposed approach were tested on three case studies (one of which is nonsmooth) using a more complex process model for the true system embedded with adequate process disturbance. Lastly, we discussed advantages and disadvantages of this strategy compared against current existing approaches such as nonlinear model predictive control.
Model‐based online optimization has not been widely applied to bioprocesses due to the challenges of modeling complex biological behaviors, low‐quality industrial measurements, and lack of visualization techniques for ongoing processes. This study proposes an innovative hybrid modeling framework which takes advantages of both physics‐based and data‐driven modeling for bioprocess online monitoring, prediction, and optimization. The framework initially generates high‐quality data by correcting raw process measurements via a physics‐based noise filter (a generally available simple kinetic model with high fitting but low predictive performance); then constructs a predictive data‐driven model to identify optimal control actions and predict discrete future bioprocess behaviors. Continuous future process trajectories are subsequently visualized by re‐fitting the simple kinetic model (soft sensor) using the data‐driven model predicted discrete future data points, enabling the accurate monitoring of ongoing processes at any operating time. This framework was tested to maximize fed‐batch microalgal lutein production by combining with different online optimization schemes and compared against the conventional open‐loop optimization technique. The optimal results using the proposed framework were found to be comparable to the theoretically best production, demonstrating its high predictive and flexible capabilities as well as its potential for industrial application.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.