The INTERSPEECH 2017 Computational Paralinguistics Challenge addresses three different problems for the first time in research competition under well-defined conditions: In the Addressee sub-challenge, it has to be determined whether speech produced by an adult is directed towards another adult or towards a child; in the Cold sub-challenge, speech under cold has to be told apart from 'healthy' speech; and in the Snoring sub-challenge, four different types of snoring have to be classified. In this paper, we describe these sub-challenges, their conditions, and the baseline feature extraction and classifiers, which include data-learnt feature representations by end-to-end learning with convolutional and recurrent neural networks, and bag-of-audio-words for the first time in the challenge series.
Automatic affect recognition is a challenging task due to the various modalities emotions can be expressed with. Applications can be found in many domains including multimedia retrieval and human computer interaction. In recent years, deep neural networks have been used with great success in determining emotional states. Inspired by this success, we propose an emotion recognition system using auditory and visual modalities. To capture the emotional content for various styles of speaking, robust features need to be extracted. To this purpose, we utilize a Convolutional Neural Network (CNN) to extract features from the speech, while for the visual modality a deep residual network (ResNet) of 50 layers. In addition to the importance of feature extraction, a machine learning algorithm needs also to be insensitive to outliers while being able to model the context. To tackle this problem, Long Short-Term Memory (LSTM) networks are utilized. The system is then trained in an end-to-end fashion where -by also taking advantage of the correlations of the each of the streams -we manage to significantly outperform the traditional approaches based on auditory and visual handcrafted features for the prediction of spontaneous and natural emotions on the RECOLA database of the AVEC 2016 research challenge on emotion recognition.
Automatic understanding of human affect using visual signals is of great importance in everyday humanmachine interactions. Appraising human emotional states, behaviors and reactions displayed in real-world settings, can be accomplished using latent continuous dimensions (e.g., the circumplex model of affect). Valence (i.e., how positive or negative is an emotion) and arousal (i.e., power of the activation of the emotion) constitute popular and effective representations for affect. Nevertheless, the majority of collected datasets this far, although containing naturalistic emotional states, have been captured in highly controlled recording conditions. In this paper, we introduce the Aff-Wild benchmark for training and evaluating affect recognition algorithms. We also report on the results of the First Affect-in-the-wild Challenge (Aff-Wild Challenge) that was recently organized in conjunction with CVPR 2017 on the Aff-Wild database, and was the first ever challenge on the estimation of valence and arousal in-the-wild. Furthermore, we design and extensively train an end-to-end deep neural dimitrios.kollias15@imperial.ac.uk † panagiotis.tzirakis12@imperial.ac.uk * m.nicolaou@gold.ac.uk a.papaioannou11@imperial.ac.uk 1 guoying.zhao@oulu.fi 2 bjoern.schuller@imperial.ac.uk 3 I.Kotsia@mdx.ac.uk architecture which performs prediction of continuous emotion dimensions based on visual cues. The proposed deep learning architecture, AffWildNet, includes convolutional and recurrent neural network (CNN-RNN) layers, exploiting the invariant properties of convolutional features, while also modeling temporal dynamics that arise in human behavior via the recurrent layers. The AffWildNet produced state-of-theart results on the Aff-Wild Challenge. We then exploit the AffWild database for learning features, which can be used as priors for achieving best performances both for dimensional, as well as categorical emotion recognition, using the RECOLA, AFEW-VA and EmotiW 2017 datasets, compared to all other methods designed for the same goal. The database and emotion recognition models are available at http://ibug. doc.ic.ac.uk/resources/first-affect-wild-challenge.Keywords deep · convolutional · recurrent · Aff-Wild · database · challenge · in-the-wild · facial · dimensional · categorical · emotion · recognition · valence · arousal · AffWildNet · RECOLA · AFEW · AFEW-VA · EmotiW 1 It is well known that the interpretation of a facial expression may depend on its dynamics, e.g. posed vs. spontaneous expressions [66].
The INTERSPEECH 2018 Computational Paralinguistics Challenge addresses four different problems for the first time in a research competition under well-defined conditions: In the Atypical Affect Sub-Challenge, four basic emotions annotated in the speech of handicapped subjects have to be classified; in the Self-Assessed Affect Sub-Challenge, valence scores given by the speakers themselves are used for a three-class classification problem; in the Crying Sub-Challenge, three types of infant vocalisations have to be told apart; and in the Heart Beats Sub-Challenge, three different types of heart beats have to be determined. We describe the Sub-Challenges, their conditions, and baseline feature extraction and classifiers, which include data-learnt (supervised) feature representations by end-to-end learning, the 'usual' ComParE and BoAW features, and deep unsupervised representation learning using the AUDEEP toolkit for the first time in the challenge series.
Affect recognition is an important component towards the better interaction between human and machines. Applications of emotion recognition in speech can be found in several areas such as human computer interaction and call centres. In recent years, Deep Neural Networks (DNN) have been used with great success in recognizing emotions. In this paper, we present a new model for continuous emotion recognition from speech. Our model, which was trained end-to-end, is comprised of a Convolutional Neural Network (CNN), which extracts features from the raw signal, and stacked on top of it a 2-layer Long Short-Term Memory (LSTM), so as to consider the contextual information in the data. Our model significantly outperforms, in terms of concordance correlation coefficient, the state-of-the-art methods for the RECOLA database.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.