A loss-of-function variant in HSD17B13 was associated with a reduced risk of chronic liver disease and of progression from steatosis to steatohepatitis. (Funded by Regeneron Pharmaceuticals and others.).
SUMMARY Yi et al. (2013) recently reported that angiopoietin-like protein 8 (ANGPTL8) was the long-sought “betatrophin” that could control pancreatic beta cell proliferation. However, studies of Angptl8−/− mice revealed profound reduction of triglyceride levels, but no abnormalities in glucose homeostasis (Wang et al. 2013). We now report that Angptl8−/− mice undergo entirely normal beta cell expansion in response to insulin resistance resulting from either a high fat diet, or from the administration of the insulin receptor antagonist S961. Furthermore, overexpression of ANGPTL8 in livers of mice doubles plasma triglyceride levels, but does not alter beta cell expansion nor glucose metabolism. These data indicate ANGPTL8 does not play a role in controlling beta cell growth, nor can it be given to induce such expansion. The findings that plasma triglyceride levels are reduced by Angptl8 deletion and increased following ANGPTL8 overexpression support the possibility that inhibition of ANGPTL8 represents a therapeutic strategy for hypertriglyceridemia.
Angiopoietin-like (ANGPTL)3 and ANGPTL8 are secreted proteins and inhibitors of LPL-mediated plasma triglyceride (TG) clearance. It is unclear how these two ANGPTL proteins interact to regulate LPL activity. ANGPTL3 inhibits LPL activity and increases serum TG independent of ANGPTL8. These effects are reversed with an ANGPTL3 blocking antibody. Here, we show that ANGPTL8, although it possesses a functional inhibitory motif, is inactive by itself and requires ANGPTL3 expression to inhibit LPL and increase plasma TG. Using a mutated form of ANGPTL3 that lacks LPL inhibitory activity, we demonstrate that ANGPTL3 activity is not required for its ability to activate ANGPTL8. Moreover, coexpression of ANGPTL3 and ANGPTL8 leads to a far more efficacious increase in TG in mice than ANGPTL3 alone, suggesting the major inhibitory activity of this complex derives from ANGPTL8. An antibody to the C terminus of ANGPTL8 reversed LPL inhibition by ANGPTL8 in the presence of ANGPTL3. The antibody did not disrupt the ANGPTL8:ANGPTL3 complex, but came in close proximity to the LPL inhibitory motif in the N terminus of ANGPTL8. Collectively, these data show that ANGPTL8 has a functional LPL inhibitory motif, but only inhibits LPL and increases plasma TG levels in mice in the presence of ANGPTL3.
The first representative of a group of mammalian, low molecular weight phosphotyrosyl protein phosphatases was cloned, sequenced and expressed in Escherichia coli. Using a 61-mer oligonucleotide probe based on the amino acid sequence of the purified enzyme, several overlapping cDNA clones were isolated from a bovine heart cDNA library. A full-length clone was obtained consisting of a 27-bp 5' noncoding region, an open reading frame encoding the expected 157 amino acid protein, and an extensive 3' nontranslated sequence. The identification of the clone as full length was consistent with results obtained in mRNA blotting experiments using poly(A)+ mRNA from bovine heart. The coding sequence was placed downstream of a bacteriophage T7 promoter, and protein was expressed in E. coli. The expressed enzyme was soluble, and catalytically active and was readily isolated and purified. The recombinant protein had the expected Mr of 18,000 (estimated by SDS-PAGE), and it showed cross-reactivity with antisera that had been raised against both the bovine heart and the human placenta enzymes. The amino acid sequence of the N-terminal region of the expressed protein showed that methionine had been removed, resulting in a sequence identical to that of the enzyme isolated from the bovine tissue, with the exception that the N-terminal alanine of the protein from tissue is acetylated. A kinetically competent phosphoenzyme intermediate was trapped from a phosphatase-catalyzed reaction. Using 31P NMR, the covalent intermediate was identified as a cysteinyl phosphate. By analogy with the nomenclature used for serine esterases, these enzymes may be called cysteine phosphatases.
The glycoprotein hormones (LH, FSH, and TSH) are critical to the maintenance of physiological homeostasis and control of reproduction. However, despite an obvious utility for synthetic pharmacological agents, there are few reports of selective, nonpeptide agonists or antagonists to receptors for these hormones. We have identified and characterized a novel synthetic molecule capable of inhibiting the action of FSH. This compound, 7-[4-[Bis-(2-carbamoyl-ethyl)-amino]-6-chloro-(1,3,5)-triazin-2-ylamino)-4-hydroxy-3-(4-methoxy-phenylazo)-naphthalene]-2-sulfonic acid, sodium salt (compound 1), is a selective, noncompetitive inhibitor of the human (h) and rat (r) FSH receptors (FSHRs). Compound 1 selectively inhibited binding of [(125)I]hFSH with an IC(50) value of 5.4 +/- 2.3 micro M. Radioligand-binding assays were performed using the baculovirus expressed extracellular domain of hFSHR (BV-tFSHR) to demonstrate site-specific interaction. Compound 1 competed for [(125)I]hFSH binding to BV-tFSHR with an IC(50) value of 10 +/- 2.8 micro M. Functionally, compound 1 inhibited hFSH-induced cAMP accumulation and steroidogenesis in vitro with an IC(50) value of 3 +/- 0.6 micro M. Competition of compound 1 for binding to other glycoprotein hormone receptors and other G protein-coupled receptors demonstrated select activity for FHSRs. Compound 1 inhibited ovulation in immature and cycling adult rats. These data provide proof of concept that selective, small molecule antagonists can be designed for glycoprotein hormone receptors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.