The interconnected and heterogeneous nature of the next-generation Electrical Grid (EG), widely known as Smart Grid (SG), bring severe cybersecurity and privacy risks that can also raise domino effects against other Critical Infrastructures (CIs). In this paper, we present an Intrusion Detection System (IDS) specially designed for the SG environments that use Modbus/Transmission Control Protocol (TCP) and Distributed Network Protocol 3 (DNP3) protocols. The proposed IDS called MENSA (anoMaly dEtection aNd claSsificAtion) adopts a novel Autoencoder-Generative Adversarial Network (GAN) architecture for (a) detecting operational anomalies and (b) classifying Modbus/TCP and DNP3 cyberattacks. In particular, MENSA combines the aforementioned Deep Neural Networks (DNNs) in a common architecture, taking into account the adversarial loss and the reconstruction difference. The proposed IDS is validated in four real SG evaluation environments, namely (a) SG lab, (b) substation, (c) hydropower plant and (d) power plant, solving successfully an outlier detection (i.e., anomaly detection) problem as well as a challenging multiclass classification problem consisting of 14 classes (13 Modbus/TCP cyberattacks and normal instances). Furthermore, MENSA can discriminate five cyberattacks against DNP3. The evaluation results demonstrate the efficiency of MENSA compared to other Machine Learning (ML) and Deep Learning (DL) methods in terms of Accuracy, False Positive Rate (FPR), True Positive Rate (TPR) and the F1 score.
Increase in usage of electronic communication tools (email, IM, Skype, etc.) in enterprise environments has created new attack vectors for social engineers. Billions of people are now using electronic equipment in their everyday workflow which means billions of potential victims of Social Engineering (SE) attacks. Human is considered the weakest link in cybersecurity chain and breaking this defense is nowadays the most accessible route for malicious internal and external users. While several methods of protection have already been proposed and applied, none of these focuses on chat-based SE attacks while at the same time automation in the field is still missing. Social engineering is a complex phenomenon that requires interdisciplinary research combining technology, psychology, and linguistics. Attackers treat human personality traits as vulnerabilities and use the language as their weapon to deceive, persuade and finally manipulate the victims as they wish. Hence, a holistic approach is required to build a reliable SE attack recognition system. In this paper we present the current state-of-the-art on SE attack recognition systems, we dissect a SE attack to recognize the different stages, forms, and attributes and isolate the critical enablers that can influence a SE attack to work. Finally, we present our approach for an automated recognition system for chatbased SE attacks that is based on Personality Recognition, Influence Recognition, Deception Recognition, Speech Act and Chat History. CCS CONCEPTS • Security and privacy → Phishing; • Computing methodologies → Supervised learning;
With the development of more advanced and efficient control algorithms and communication architectures, UAVs and networks thereof (swarms) now find applications in nearly all possible environments and scenarios. There exist numerous schemes which accommodate routing for such networks, many of which are specifically designed for distinct use-cases. Validation and evaluation of routing schemes is implemented for the most part using simulation software. This approach is however incapable of considering real-life noise, radio propagation models, channel bit error rate and signal-to-noise ratio. Most importantly, existing frameworks or simulation software cannot sense physical-layer related information regarding power consumption which an increasing number of routing protocols utilize as a metric. The work presented in this paper contributes to the analysis of already existing routing scheme evaluation frameworks and testbeds and proposes an efficient, universal and standardized hardware testbed. Additionally, three interface modes aimed at evaluation under different scenarios are provided.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.