The epitaxial growth of germanium on silicon leads to the self-assembly of SiGe nanocrystals by a process that allows the size, composition and position of the nanocrystals to be controlled. This level of control, combined with an inherent compatibility with silicon technology, could prove useful in nanoelectronic applications. Here, we report the confinement of holes in quantum-dot devices made by directly contacting individual SiGe nanocrystals with aluminium electrodes, and the production of hybrid superconductor-semiconductor devices, such as resonant supercurrent transistors, when the quantum dot is strongly coupled to the electrodes. Charge transport measurements on weakly coupled quantum dots reveal discrete energy spectra, with the confined hole states displaying anisotropic gyromagnetic factors and strong spin-orbit coupling with pronounced dependences on gate voltage and magnetic field.
Mesoscopic charge pumping, a transport mechanism that relies on the explicit time-dependence of some properties of a nanoscale conductor, was envisaged theoretically a few decades ago(1-4). So far, nanoscale pumps have been realized only in systems exhibiting strong Coulombic effects(5-12), whereas evidence for pumping in the absence of Coulomb blockade has been elusive. A pioneering experiment by Switkes et al.(13) evidenced the difficulty of modulating in time the properties of an open mesoscopic conductor at cryogenic temperatures without generating undesired bias voltages due to stray capacitances(14,15). One possible solution to this problem is to use the a. c. Josephson effect to induce periodically time-dependent Andreev reflection amplitudes in a hybrid normal-superconducting system(16). Here we report the experimental detection of charge flow in an unbiased InAs nanowire embedded in a superconducting quantum interference device (SQUID). In this system, quantum pumping may occur via the cyclic modulation of the phase of the order parameter of different superconducting electrodes. The symmetry of the current with respect to the enclosed magnetic flux(17,18) and bias SQUID current is a discriminating signature of pumping. Currents exceeding 20 pA are measured at 250 mK, and exhibit symmetries compatible with quantum pumping
In amorphous superconducting thin films of N b 0.15 Si 0.85 and InO x , a finite Nernst coefficient can be detected in a wide range of temperature and magnetic field. Due to the negligible contribution of normal quasi-particles, superconducting fluctuations easily dominate the Nernst response in the entire range of study. In the vicinity of the critical temperature and in the zero-field limit, the magnitude of the signal is in quantitative agreement with what is theoretically expected for the Gaussian fluctuations of the superconducting order parameter. Even at higher temperatures and finite magnetic field, the Nernst coefficient is set by the size of superconducting fluctuations. The Nernst coefficient emerges as a direct probe of the ghost critical field, the normal-state mirror of the upper critical field. Moreover, upon leaving the normal state with fluctuating Cooper pairs, we show that the temperature evolution of the Nernst coefficient is different whether the system enters a vortex solid, a vortex liquid or a phase-fluctuating superconducting regime.
We investigate electronic transport in n-i-n GaN nanowires with and without AlN double barriers. The nanowires are grown by catalyst-free, plasma-assisted molecular beam epitaxy enabling abrupt GaN/AlN interfaces as well as longitudinal n-type doping modulation. At low temperature, transport in n-i-n GaN nanowires is dominated by the Coulomb blockade effect. Carriers are confined in the undoped middle region, forming single or multiple islands with a characteristic length of approximately 100 nm. The incorporation of two AlN tunnel barriers causes confinement to occur within the GaN dot in between. In the case of a 6 nm thick dot and 2 nm thick barriers, we observe characteristic signatures of Coulomb-blockaded transport in single quantum dots with discrete energy states. For thinner dots and barriers, Coulomb-blockade effects do not play a significant role while the onset of resonant tunneling via the confined quantum levels is accompanied by a negative differential resistance surviving up to approximately 150 K.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.