The study on fault detection and diagnosis (FDD) of chemical processes has always been the top priority of the chemical process safety. In this paper, a fault diagnosis method combining the deep convolutional with the recurrent neural network (DCRNN) is proposed. In this method, the data from chemical processes are input to the deep convolutional neural network (DCNN) to extract features in spatial domains, and then, the features are fused into the bidirectional recurrent neural network (BRNN). Due to the powerful capabilities of DCNN to extract features in spatial domains and the sensitivity to time series of RNN, the combined method can adaptively learn the dynamic information of the raw data in both spatial and temporal domains and has unique advantages in multivariate chemical processes. The application of the DCRNN model in the Tennessee Eastman (TE) process demonstrates the high accuracy of this proposal in identifying abnormal conditions for the chemical process, compared with the traditional fault identification algorithms of deep learning.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.