Pneumonia adalah infeksi saluran pernafasan akut yang mempengaruhi paru-paru. Kasus pneumonia merupakan kasus yang menyebabkan kematian dengan mudah menular terbesar pada anak di seluruh dunia. Teknik pemodelan spasial mampu dalam mengakomodir struktur ketergantungan spasial. Penderita kasus pneumonia di suatu wilayah akan mempengaruhi jumlah penderita yang saling berdekatan/bertetanggaan. Analisis yang dilakukan adalah dengan model regresi linier klasik strategi metode OLS. uji autokorelasi spasial dengan uji Moran I. Memakai matriks pembobot. Lakukan pengambilan nilai autokorelasi spasial dan Uji Lagrange Multiplier. Tujuan dan manfaat penelitian ini adalah membangun model yang lebih baik dengan pemodelan spasial ekonometrika pada kasus pneumonia balita laki-laki di 30 kecamatan Kota Bandung berdasarkan Moran Index dan Uji Lagrange Multiplier dengan mempertimbangkan nilai AIC yang terkecil dan manfaatnya sebagai bahan kebijakan pemerintah kota bandung khususnya dinas terkait dalam hal penanganan kasus pneumonia agar dapat dikendalikan penyebarannya berdasarkan analisis spasial. Model yang di dapat dalam penelitian ini adalah model spasial SARMA dengan nilai AIC adalah 46,008.
Economic development is affected by several factors, one of which is the inflation rate. One indicator used to measure the inflation rate is Consumer Price Index (CPI). The CPI data is recorded simultaneously at several locations over time, produces space-time data. In Central Java Province, CPI is calculated in six regency/cities, so the CPI is affected by the time and other locations named space-time effect. The forecasting methods involve space and time effect simultaneously is GSTAR. This study used the GSTAR model to forecasting the CPI in 3 cities in Central Java, assuming that autoregressive and space-time parameters differ for each location. This study aims to obtain the best GSTAR model to forecast the CPI in three cities in Central Java by using the IDW and NCC weighting. The results indicated that the best GSTAR model for forecast the CPI in three cities (Surakarta, Semarang, and Tegal) was the GSTARI (1,1,1) model. The GSTARI (1,1,1) model fulfils the assumption of homoscedasticity, white noise, and multivariate normal. The MAPE values obtained using the IDW and NCC weighting are 0.2922% and 0.2914%, respectively. From these results, it can be concluded that the best GSTARI (1,1,1) model to forecast the CPI data in three cities in Central Java is NCC weights, as they have a minimum MAPE value . The results of this research can be used as consideration for the government in making economic policies at the present and in the future.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.