In order to detect abnormal communication behaviors efficiently in today's industrial control system, a new intrusion detection algorithm based on One-Class Support Vector Machine (OCSVM) is proposed in this paper. In this algorithm, a normal communication behavior model is established by using OCSVM, and the Particle Swarm Optimization algorithm is designed to optimize OCSVM model parameters. Furthermore, we adopt the normal Modbus function code sequence to train OCSVM model, and then use this model to detect abnormal Modbus TCP traffic. Our simulation results show that the proposed algorithm not only is efficient and reliable but also meets the real-time requirements of anomaly detection in industrial control system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.