Access to the full text of the published version may require a subscription. À5 emu. The BTF7C3O films were scrutinized by xray diffraction, high resolution transmission electron microscopy, scanning transmission electron microscopy, and energy dispersive x-ray analysis mapping to assess the prospect of the observed multiferroic properties being intrinsic to the main phase. The results of extensive micro-structural phase analysis demonstrated that the BTF7C3O films comprised of a 3.95% Fe/Co-rich spinel phase, likely CoFe 2 À x Ti x O 4 , which would account for the observed magnetic moment in the films. Additionally, x-ray magnetic circular dichroism photoemission electron microscopy (XMCD-PEEM) imaging confirmed that the majority of magnetic response arises from the Fe sites of Fe/Co-rich spinel phase inclusions. While the magnetic contribution from the main phase could not be determined by the XMCD-PEEM images, these data however imply that the Rights
The deposition by atomic vapor deposition of highly c-axis-oriented Aurivillius phase Bi 5Ti 3FeO 15 (BTFO) thin films on (100) Si substrates is reported. Partially crystallized BTFO films with c-axis perpendicular to the substrate surface were first deposited at 610°C (8 excess Bi), and subsequently annealed at 820°C to get stoichiometric composition. After annealing, the films were highly c-axis-oriented, showing only (00l) peaks in x-ray diffraction (XRD), up to (0024). Transmission electron microscopy (TEM) confirms the BTFO film has a clear layered structure, and the bismuth oxide layer interleaves the four-block pseudoperovskite layer, indicating the n 4 Aurivillius phase structure. Piezoresponse force microscopy measurements indicate strong in-plane piezoelectric response, consistent with the c-axis layered structure, shown by XRD and TEM
Bismuth ferrite (BiFeO3) is a widely studied material, because of its interesting multiferroic properties. Bismuth self-limiting growth of single-phase BiFeO3 (BFO) has previously been achieved using molecular beam epitaxy (MBE), but the growth of BFO by chemical vapor deposition (CVD) has proved to be very challenging, because of the volatile nature of bismuth. The growth window regarding temperature, pressure, and precursor flow rates that will give a pure perovskite BFO phase is normally very small. In this work, we have studied the metal–organic CVD (MOCVD) growth of epitaxial BFO thin films on SrTiO3 substrates and found that by carefully controlling the amount of the iron precursor, Fe(thd)3 (where thd = 2,2,6,6 tetra-methyl-3,5-heptanedionate), we were able to achieve bismuth self-liming growth, for the first time. The effect of the volume of the bismuth and iron precursors injected on the growth of BFO thin films is reported, and it has been found that the phase-pure films can be prepared when the Bi/Fe ratios are between 1.33 and 1.81 under temperature and pressure conditions of 650 °C and 10 mbar, respectively, and where the O2 gas flow was kept constant to 1000 sccm out of a total gas flow of 3000 sccm. Piezoresponse force microscopy (PFM) studies demonstrate the presence of bipolar switching in ultrathin BFO films
Type of publicationArticle (peer-reviewed) ) substrates by an atomic vapor deposition technique. The ferroelectric properties of the thin films are greatly affected by the presence of various kinds of defects. Detailed x-ray diffraction data and transmission electron microscopy analysis demonstrated the presence of out-of-phase boundaries (OPBs). It is found that the OPB density changes appreciably with the amount of titanium injected during growth of the thin films. Piezo-responses of the thin films were measured by piezo-force microscopy. It is found that the in-plane piezoresponse is stronger than the out-of-plane response, due to the strong c-axis orientation of the films. V C 2013 AIP Publishing LLC [http://dx
Access to the full text of the published version may require a subscription. 15 . The electromechanical responses of the materials were investigated using piezoresponse force microscopy and the results are discussed in relation to the crystallinity of the films as measured by x-ray diffraction. Rights
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.