The moisture budget associated with the eastward-propagating Madden-Julian oscillation (MJO) was diagnosed using 1979-2001 40-yr ECMWF Re-Analysis (ERA-40) data. A marked zonal asymmetry of the moisture relative to the MJO convection appears in the planetary boundary layer (PBL, below 700 hPa), creating a potentially more unstable stratification to the east of the MJO convection and favoring the eastward propagation of MJO. The PBL-integrated moisture budget diagnosis indicates that the vertical advection of moisture dominates the low-level moistening ahead of the convection. A further diagnosis indicates that the leading term in the vertical moisture advection is the advection of the background moisture by the MJO ascending flow associated with PBL convergence. The cause of the zonally asymmetric PBL convergence is further examined. It is found that heating-induced free-atmospheric wave dynamics account for 75%-90% of the total PBL convergence, while the warm SST anomaly induced by air-sea interaction contributes 10%-25% of the total PBL convergence.The horizontal moisture advection also plays a role in contributing to the PBL moistening ahead of the MJO convection. The leading term in the moisture advection is the advection across the background moisture gradient by the MJO flow. In the western Indian Ocean, Maritime Continent, and western Pacific, the meridional moisture advection by the MJO northerly flow dominates, while in the eastern Indian Ocean the zonal moisture advection is greater. The contribution of the moisture advection by synoptic eddies is in general small; it has a negative effect over the tropical Indian Ocean and western Pacific and becomes positive in the Maritime Continent region.
Owing to the limited length of observed tropical cyclone data and the effects of multidecadal internal variability, it has been a challenge to detect trends in tropical cyclone activity on a global scale. However, there is a distinct spatial pattern of the trends in tropical cyclone frequency of occurrence on a global scale since 1980, with substantial decreases in the southern Indian Ocean and western North Pacific and increases in the North Atlantic and central Pacific. Here, using a suite of high-resolution dynamical model experiments, we show that the observed spatial pattern of trends is very unlikely to be explained entirely by underlying multidecadal internal variability; rather, external forcing such as greenhouse gases, aerosols, and volcanic eruptions likely played an important role. This study demonstrates that a climatic change in terms of the global spatial distribution of tropical cyclones has already emerged in observations and may in part be attributable to the increase in greenhouse gas emissions.
[1] Monsoons, the most energetic tropical climate system, exert a great social and economic impact upon billions of people around the world. The global monsoon precipitation had an increasing trend over the past three decades. Whether or not this increasing trend will continue in the 21st century is investigated, based on simulations of three high-resolution atmospheric general circulation models that were forced by different future sea surface temperature (SST) warming patterns. The results show that the global monsoon area, precipitation and intensity all increase consistently among the model projections. This indicates that the strengthened global monsoon is a robust signal across the models and SST patterns explored here. The increase of the global monsoon precipitation is attributed to the increases of moisture convergence and surface evaporation. The former is caused by the increase of atmospheric water vapor and the latter is due to the increase of SST. The effect of the moisture and evaporation increase is offset to a certain extent by the weakening of the monsoon circulation. Citation:
In 1995 an abrupt shift in the late-season (October-December) typhoon activity over the western North Pacific (WNP) is detected by a Bayesian changepoint analysis. Interestingly, a similar change also occurs in the late-season sea surface temperature series over the western Pacific, eastern North Pacific, and portions of the Indian Ocean. All of the counts, lifespans, and accumulated cyclone energy of the late-season typhoons during the 1995-2011 epoch decreased significantly, compared with typhoons that occurred during the 1979-94 epoch. The negative vorticity anomaly is found to be the leading contributor to the genesis potential index (GPI) decrease over the southeastern sector of the WNP during 1995-2011. To elucidate the origin of the epochal change in the dynamic environmental conditions, a suite of sensitivity experiments is conducted based on the latest version of the Japan Meteorological Research Institute atmospheric general circulation model (MRI AGCM). The ensemble simulations suggest that the recent change to a La Niña-like state induces an unfavorable dynamic condition for typhoon genesis over the southeastern WNP. Warming in the Indian Ocean, however, contributes insignificantly to the circulation anomaly related to typhoon genesis over the southeastern WNP. The frequency of typhoon occurrence reveals a basinwide decrease over the WNP in the recent epoch, except for a small increase near Taiwan. An empirical statistical analysis shows that the basinwide decrease in the frequency of the typhoon occurrence is primarily attributed to a decrease in typhoon genesis, while the change in track is of less importance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.