Somatic mutations in exons encoding the tyrosine kinase domain of the epidermal growth factor receptor (EGFR) gene are found in human lung adenocarcinomas and are associated with sensitivity to the tyrosine kinase inhibitors gefitinib and erlotinib. Nearly 90% of the EGFR mutations are either short, in-frame deletions in exon 19 or point mutations that result in substitution of arginine for leucine at amino acid 858 (L858R). To study further the role of these mutations in the initiation and maintenance of lung cancer, we have developed transgenic mice that express an exon 19 deletion mutant (EGFR ⌬L747-S752 ) or the L858R mutant (EGFR L858R ) in type II pneumocytes under the control of doxycycline. Expression of either EGFR mutant leads to the development of lung adenocarcinomas. Two weeks after induction with doxycycline, mice that express the EGFR L858R allele show diffuse lung cancer highly reminiscent of human bronchioloalveolar carcinoma and later develop interspersed multifocal adenocarcinomas. In contrast, mice expressing EGFR ⌬L747-S752 develop multifocal tumors embedded in normal lung parenchyma with a longer latency. With mice carrying either EGFR allele, withdrawal of doxycycline (to reduce expression of the transgene) or treatment with erlotinib (to inhibit kinase activity) causes rapid tumor regression, as assessed by magnetic resonance imaging and histopathology, demonstrating that mutant EGFR is required for tumor maintenance. These models may be useful for developing improved therapies for patients with lung cancers bearing EGFR mutations.[Keywords: EGFR; lung adenocarcinoma; mice; tyrosine kinase inhibitor] Supplemental material is available at http://www.genesdev.org.
Mutations in the MET exon 14 RNA splice acceptor and donor sites, which lead to exon skipping, deletion of the juxtamembrane domain containing the Cbl E3-ubiquitin ligase binding site, and decreased turnover of the resultant aberrant MET protein, were previously reported to be oncogenic in preclinical models. We now report responses to the MET inhibitors crizotinib and cabozantinib in four patients with stage IV lung adenocarcinomas harboring mutations leading to MET exon 14 skipping, highlighting a new therapeutic strategy for the 4% of lung adenocarcinoma patients whose tumors harbor this previously underappreciated genetic alteration.
SUMMARY
Seventy-five percent of lung adenocarcinomas with epidermal growth factor receptor (EGFR) mutations respond to treatment with the tyrosine kinase inhibitors (TKIs) gefitinib and erlotinib; however, drug-resistant tumors eventually emerge. In 60% of cases, resistant tumors carry a secondary mutation in EGFR (T790M), amplification of MET, or both. Here, we describe the establishment of erlotinib resistance in lung tumors, which were induced by mutant EGFR, in transgenic mice after multiple cycles of drug treatment; we detect the T790M mutation in five out of 24 tumors or Met amplification in one out of 11 tumors in these mice. This preclinical mouse model, therefore, recapitulates the molecular changes responsible for resistance to TKIs in human tumors and holds promise for the discovery of additional mechanisms of drug resistance in lung cancer.
Growth factor regulation of c-fos proto-oncogene transcription is mediated by a 20-bp region of dyad symmetry, termed the serum response element. The inner core of this element binds a 67-kDa phosphoprotein, the serum response factor (SRF), that is thought to play a pivotal role in the c-fos transcriptional response. To investigate the mechanism by which SRF regulates c-fos expression, we generated polyclonal anti-SRF antibodies and used these antibodies to analyze the biochemical properties of SRF. These studies indicate that the synthesis of SRF is transient, occurring within 30 min to 4 h after serum stimulation of quiescent fibroblasts. Newly synthesized SRF is transported to the nucleus, where it is increasingly modified by phosphorylation during progression through the cell cycle. Within 2 h of serum stimulation, differentially modified forms of SRF can be distinguished on the basis of the ability to bind a synthetic serum response element. SRF protein exhibits a half-life of greater than 12 h and is predominantly nuclear, with no change occurring in its localization upon serum stimulation. We find that the induction of SRF synthesis is regulated at the transcriptional level and that cytoplasmic SRF mRNA is transiently expressed with somewhat delayed kinetics compared with c-fos mRNA expression. These features of SRF expression suggest a model whereby newly synthesized SRF functions in the shutoff of c-fos transcription.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.