Cytokines are soluble glycoproteins that are produced by and mediate communication between and within immune and nonimmune cells, organs and organ systems throughout the body. Pro- and anti-inflammatory mediators constitute the inflammatory cytokines, which are modulated by various stimuli, including physical activity, trauma and infection. Physical activity affects local and systemic cytokine production at different levels, often exhibiting striking similarity to the cytokine response to trauma and infection. The present review examines the cytokine response to short term exercise stress, with an emphasis on the balance between pro- and anti-inflammatory mechanisms and modulation of both innate and specific immune parameters through cytokine regulation. The effects of long term exercise on cytokine responses and the possible impact on various facets of the immune system are also discussed, with reference to both cross-sectional and longitudinal studies of exercise training. Finally, the validity of using exercise as a model for trauma and sepsis is scruti- nised in the light of physiological changes, symptomatology and outcome, and limitations of the model are addressed. Further studies, examining the effect of exercise, trauma and infection on novel cytokines and cytokine systems are needed to elucidate the significance of cytokine regulation by physical activity and, more importantly, to clarify the health implications of short and long term physical activity with respect to overall immune function and resistance to infection.
This first human trial evaluating the immunologic/anti-inflammatory effects of hypertonic resuscitation in trauma patients demonstrates that HSD promotes a more balanced inflammatory response to hemorrhagic shock, raising the possibility that similar to experimental models, HSD might also attenuate post-trauma MOD.
Physical activity induces a subclinical inflammatory response, mediated in part by leukocytes, and manifested by elevated concentrations of circulating proinflammatory cytokines, including interleukin (IL)-1beta, IL-6, and tumor necrosis factor-alpha (TNF-alpha). However, the source of the cytokines that appear during exercise remains unknown. In this study, we examined exercise-induced changes in plasma cytokine concentrations and their corresponding mRNA expression in peripheral blood mononuclear cells. Ten healthy [peak oxygen uptake = 48.8 +/- 6.5 (SD) ml. kg(-1). min(-1)] but untrained men [age = 25 +/- 5 (SD) yr] undertook 3 h of exercise (cycling and inclined walking) at 60-65% peak oxygen uptake. Circulating leukocyte subset counts were elevated during and 2 h postexercise but returned to normal within 24 h. Plasma concentrations of IL-1beta, IL-6, and TNF-alpha peaked at the end of exercise and remained elevated at 2 h (IL-6) and up to 24 h (IL-1beta and TNF-alpha) postexercise. Cytokine gene expression in circulating mononuclear cells was measured by using the reverse transcriptase-polymerase chain reaction; mRNA accumulation did not change with exercise. In conclusion, mRNA accumulation of IL-1beta, IL-6, and TNF-alpha in circulating mononuclear cells is not affected by 3 h of moderate endurance exercise and does not seem to account for the observed increases in plasma cytokines.
It was hypothesized that muscle injury would be greater with eccentric than with all-out or prolonged exercise, and that immune changes might provide an indication that supplements the information provided by traditional markers such as creatine kinase (CK) or delayed-onset muscle soreness. Eight healthy males [mean (SE): age = 24.9 (2.3) years, maximum oxygen consumption (VO2(max)) = 43.0 (3.1) ml x kg(-1) x min(-1)] were each assigned to four experimental conditions, one at a time, using a randomized-block design: 5 min of cycle ergometer exercise at 90% VO2(max) (AO), a standard circuit-training routine (CT), 2 h cycle ergometer exercise at 60% VO2(max) (Long), or remained seated for 5 h. Blood samples were analyzed for CK, natural killer (NK) cell counts (CD3(-)/CD16(+)56(+)), cytolytic activity and plasma levels of the cytokines interleukin (IL)-6, IL-10, and tissue necrosis factor alpha (TNF-alpha). CK levels were only elevated significantly 72 h following CT. NK cell counts increased significantly during all three types of exercise, but returned to pre-exercise baseline values within 3 h of recovery. Cytolytic activity per NK cell was not significantly modified by any type of exercise. Prolonged exercise induced significant increases in plasma IL-6 and TNF-alpha. We conclude that the lack of correlation between traditional markers of muscle injury (plasma CK concentrations and muscle soreness rankings) and immune markers of the inflammatory response suggests that, for the types and intensities of exercise examined in this study, the exercise-induced inflammatory response is modified by humoral and cardiovascular correlates of exercise.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.